
Chapter 0 Summary Sheet

Domain: The set of all x-values

Range: The set of all y-values

Extraneous Solution – a non-solution introduced when solving an equation by raising both sides to a power.

Conjugate - $a + b\sqrt{m}$ and $a - b\sqrt{m}$ are conjugates of each other.

The polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ is of **degree** n, a_n is the **leading coefficient**, and a_0 is the **constant term**.

Scientific Notation Ex 1: $359,000,000 = 3.59 \times 10^8$ Ex 2: $.00000000312 = 3.12 \times 10^{-9}$

Properties of Exponents

$$a^{m}a^{n} = a^{m+n} \quad \frac{a^{m}}{a^{n}} = a^{m-n} \quad a^{-n} = \frac{1}{a^{n}} \quad a^{0} = 1 \quad (ab)^{m} = a^{m}b^{m} \quad (a^{m})^{n} = a^{mn} \quad \left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}} \quad a^{m/n} = \left(\sqrt[n]{b}\right)^{m} = \sqrt[n]{a^{m}}$$

Properties of Radicals

Absolute Value Equations Ex: |x+a| = b **Positive Case:** x+a = b **Negative Case:** x+a = -b

Absolute Value Inequalities

Ex 1: |x+a| < b AND casePositive Case: x+a < bNegative Case (Flip Sign): x+a > -bLess thandAND (Solution is where the graphs overlap)

Ex 2: |x+a| > b **OR case** Great<u>or</u> OR (Solution is anything that either graph covers) **Negative Case (Flip Sign):** x+a < -b

5 Basic Methods for Factoring Polynomials

	Standard Form	Factored Form
Greatest Common Factor	$2x^3-6x$	$2x(x^2-3)$
Difference of Squares	$x^{2}-81$	(x+9(x-9))
Big X	$x^2 - 7x + 12$	(x-3)(x-4)
Grouping	$x^3 - 2x^2 - 3x + 6$	$(x-2)(x^2-3)$
Big X with Grouping	$2x^2 + x - 15$	(2x-5)(x+3)

Factoring Special Polynomials

Difference of Two Squares	Perfect Square Trinomial	Sum or Difference of Two Cubes		
$a^2 - b^2 = (a+b)(a-b)$	$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$	$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$		
Method for remembering sum and difference of cubes:				
Notice that a sum of cubes factors into the product of a binomial and trinomial. The binomial has the <u>same</u> sign as what you started with. The first operation in the trinomial is the <u>opposite</u> of that in the binomial. The second operation in the trinomial is always <u>plus</u> . Acronym: SOP (S)ame (O)pposite (P)lus				
Special Products	Pascal's Triangle			
Sum and Difference of Same Te $(a+b)(a-b) = a^2 - b^2$ Square of a Binomial		$\begin{array}{ll} (a+b)^0 & \mbox{Constructing Pascal's Triangle:} \\ (a+b)^1 & 1's \mbox{ are on the left and right side} \\ (a+b)^2 & \mbox{and the numbers between are the} \\ (a+b)^3 & \mbox{sum of the two numbers above.} \end{array}$		
$(a+b)^{2} = a^{2} + 2ab + b^{2}$ $(a-b)^{2} = a^{2} - 2ab + b^{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(a+b)^4$		
Cube of a Binomial $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	a product of the same binom	letermine the coefficients when expanding ial. You should understand how to apply remembering the special products.		

Note: It easier to treat a difference binomial (a - b) instead as a sum (a + (-b)) when applying Pascal's Triangle.

Quadratic Equation in General Form: $ax^{2} + bx + c = 0$

Quadratic Formula 2 Methods for Remembering the Quadratic Formula

v —	$-b\pm\sqrt{b^2-4ac}$
x — —	2a

1) A negative boy couldn't decide whether to go to a radical party. He was square so he missed out on four awesome chicks. The party was over at 2 a.m. 2) Pop goes the weasel melody

Annual Interest Rate Formula: A = P(1+rt)

P: Principle (The initial amount invested)

T: Length of time Principle is invested

A: Account Balance (How much money is in the account)

Completing the Square Method

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

1) Move the constant, c, to the right side.

2) If necessary, factor out *a* from the two terms on the left side.

3) Add $\left(\frac{b}{2}\right)^2$ to both sides of the equation. Multiply $\left(\frac{b}{2}\right)^2$ the on the right side by the *a* factor.

R: Interest Rate

4) Complete the square, simplify, and begin the process of isolating x.

Factors Involving Negative Exponents

U Substitution

= (4x - 17)(4x - 23)

Factor out the base with the smallest exponent.

Factor

 $(4x-15)^2 - 10(4x-15) + 16$ $x(x+1)^{-1/2} + (x+1)^{1/2} = (x+1)^{-1/2} \left[x(x+1)^{0} + (x+1)^{1} \right]$ $= (x+1)^{-1/2} [x+(x+1)]$ u = 4x - 15 Substitute u in for 4x - 15 $u^2 - 10u + 16$ Much easier to factor $=(x+1)^{-1/2}(2x+1)$ =(u-2)(u-8)=(4x-15-2)(4x-15-8) Plug 4x-15 back in for u.