Chapter 0 Summary Sheet

Domain: The set of all x-values
Range: The set of all y-values
Extraneous Solution - a non-solution introduced when solving an equation by raising both sides to a power.

Conjugate $-a+b \sqrt{m}$ and $a-b \sqrt{m}$ are conjugates of each other.

The polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ is of degree n, a_{n} is the leading coefficient, and a_{0} is the constant term.

Scientific Notation
Ex 1: $359,000,000=3.59 \times 10^{8}$
Ex 2: $.00000000312=3.12 \times 10^{-9}$

Properties of Exponents

$$
a^{m} a^{n}=a^{m+n} \quad \frac{a^{m}}{a^{n}}=a^{m-n} \quad a^{-n}=\frac{1}{a^{n}} \quad a^{0}=1 \quad(a b)^{m}=a^{m} b^{m} \quad\left(a^{m}\right)^{n}=a^{m n} \quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad a^{m / n}=(\sqrt[n]{b})^{m}=\sqrt[n]{a^{m}}
$$

Properties of Radicals
$\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \quad \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} \quad \sqrt[n]{a} \sqrt[n]{b}_{b}^{\sqrt[n]{a}}=\sqrt[n]{\frac{a}{b}} \quad\left(\sqrt[n]{a} \quad(\sqrt[n]{n})^{n}=a\right.$

Inequality Notation
Interval Notation

Ex 1: $\mathrm{x}<\mathrm{a}$ or $\mathrm{x} \geq \mathrm{b}$

$$
(-\infty, a) \cup[b, \infty)
$$

Ex 2: $\mathrm{a} \leq \mathrm{x}<\mathrm{b} \quad$ Note:
$[\mathrm{a}, \mathrm{b})$
(Parentheses) for $<,>$, or ∞ [Brackets] for \leq or \geq

Absolute Value Equations Ex: $|\mathrm{x}+\mathrm{a}|=\mathrm{b} \quad$ Positive Case: $\mathrm{x}+\mathrm{a}=\mathrm{b} \quad$ Negative Case: $\mathrm{x}+\mathrm{a}=-\mathrm{b}$
Absolute Value Inequalities
Ex 1: $|x+a|<b$ AND case Positive Case: $x+a<b \quad$ Negative Case (Flip Sign): $x+a>-b$
Less thand AND (Solution is where the graphs overlap)
Ex 2: $|x+a|>b$ OR case Positive Case: $x+a>b \quad$ Negative Case (Flip Sign): $x+a<-b$
Greator OR (Solution is anything that either graph covers)

5 Basic Methods for Factoring Polynomials

Greatest Common Factor
Difference of Squares
Big X
Grouping
Big X with Grouping

Standard Form

Factored Form

$$
\begin{gathered}
2 x^{3}-6 x \\
x^{2}-81 \\
x^{2}-7 x+12 \\
x^{3}-2 x^{2}-3 x+6 \\
2 x^{2}+x-15
\end{gathered}
$$

Factoring Special Polynomials

Difference of Two Squares

$a^{2}-b^{2}=(a+b)(a-b)$

Perfect Square Trinomial

$$
\begin{aligned}
a^{2}+2 a b+b^{2} & =(a+b)^{2} \\
a^{2}-2 a b+b^{2} & =(a-b)^{2}
\end{aligned}
$$

Sum or Difference of Two Cubes

$$
\begin{aligned}
a^{3}+b^{3} & =(a+b)\left(a^{2}-a b+b^{2}\right) \\
a^{3}-b^{3} & =(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

Method for remembering sum and difference of cubes:

Notice that a sum of cubes factors into the product of a binomial and trinomial. The binomial has the same sign as what you started with. The first operation in the trinomial is the opposite of that in the binomial. The second operation in the trinomial is always plus. Acronym: SOP (S)ame (O)pposite (P)lus

Special Products Pascal's Triangle

Sum and Difference of Same Terms $(a+b)(a-b)=a^{2}-b^{2}$			1		
		1	1		
Square of a Binomial		1	2	1	
$(a+b)^{2}=a^{2}+2 a b+b^{2}$	1	3	3	1	
$(a-b)^{2}=a^{2}-2 a b+b^{2}$		4	6	4	1

$(a+b)^{0} \quad$ Constructing Pascal's Triangle:
$(a+b)^{1} \quad 1^{\prime} s$ are on the left and right side and the numbers between are the sum of the two numbers above.

Pascal's triangle helps you determine the coefficients when expanding a product of the same binomial. You should understand how to apply Pascal's triangle instead of remembering the special products.

Note: It easier to treat a difference binomial $(a-b)$ instead as a sum $(\mathrm{a}+(-\mathrm{b}))$ when applying Pascal's Triangle.

Quadratic Equation in General Form: $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$

Quadratic Formula 2 Methods for Remembering the Quadratic Formula

$$
\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

1) A negative boy couldn't decide whether to go to a radical party. He was square so he missed out on four awesome chicks. The party was over at 2 a.m.
2) Pop goes the weasel melody

Annual Interest Rate Formula: $\mathrm{A}=\mathrm{P}(1+\mathrm{rt})$
A: Account Balance (How much money is in the account) P: Principle (The initial amount invested) R: Interest Rate
T: Length of time Principle is invested

Completing the Square Method

1) Move the constant, c, to the right side.

$$
\begin{aligned}
& (a+b)^{2} \\
& (a+b)^{3}
\end{aligned}
$$

Cube of a Binomial

$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
2) If necessary, factor out a from the two terms on the left side.
3) Add $\left(\frac{b}{2}\right)^{2}$ to both sides of the equation. Multiply $\left(\frac{b}{2}\right)^{2}$ the on the right side by the a factor.
4) Complete the square, simplify, and begin the process of isolating x.

Factors Involving Negative Exponents

Factor out the base with the smallest exponent.

$$
\begin{aligned}
\mathrm{x}(\mathrm{x}+1)^{-1 / 2}+(\mathrm{x}+1)^{1 / 2} & =(\mathrm{x}+1)^{-1 / 2}\left[\mathrm{x}(\mathrm{x}+1)^{0}+(\mathrm{x}+1)^{1}\right] \\
& =(\mathrm{x}+1)^{-1 / 2}[\mathrm{x}+(\mathrm{x}+1)] \\
& =(\mathrm{x}+1)^{-1 / 2}(2 \mathrm{x}+1)
\end{aligned}
$$

U Substitution

Factor

$$
\begin{aligned}
& (4 x-15)^{2}-10(4 x-15)+16 \\
& u=4 x-15 \quad \text { Substitute } u \text { in for } 4 x-15 \\
& u^{2}-10 u+16 \text { Much easier to factor } \\
& =(u-2)(u-8) \\
& =(4 x-15-2)(4 x-15-8) \text { Plug } 4 x-15 \text { back in for } u . \\
& =(4 x-17)(4 x-23)
\end{aligned}
$$

