Chapter 3 Summary Sheet

Exponential Function: $f(x) = a^x$

Exponential Growth

Horizontal Shift

 $g(x) = 3^{x+1}$

Graph of $y = a^x, a > 1$

- Domain: $(-\infty, \infty)$
- Range: (0, ∞)
- Intercept: (0, 1)
- · Increasing
- · x-axis is a horizontal asymptote $(a^x \to 0 \text{ as } x \to -\infty)$
- Continuous

Exponential Decay

 $f(x) = 3^x$

 $k(x) = -3^x$

asymptote.

Graph of $y = a^{-x}, a > 1$

- Domain: $(-\infty, \infty)$
- Range: (0, ∞)
- Intercept: (0, 1)
- Decreasing
- x-axis is a horizontal asymptote $(a^{-x} \rightarrow 0 \text{ as } x \rightarrow \infty)$
- · Continuous

Exponential Transformations: 1st: Shift the starting point and asymptote

2nd: Apply reflection Reflect over the vertical line passing Reflect over the horizontal

 $f(x) = 3^x$ $h(x) = 3^x - 2$

<u>Logarithmic Function</u>: $f(x) = log_a x$ **Important:** The inverse of an exponential function is a logarithmic function. **Recall:** The inverse of a function is reflected over the line y = x.

Exponential Growth

Graph of $y = \log_a x, a > 1$

- Domain: (0, ∞)
- Range: $(-\infty, \infty)$
- x-intercept: (1, 0)
- · Increasing
- · One-to-one, therefore has an inverse function
- v-axis is a vertical asymptote $(\log_a x \to -\infty \text{ as } x \to 0^+).$
- Continuous
- Reflection of graph of $y = a^x$ about the line y = x

<u>Logarithmic Transformations:</u> 1st: Shift the starting point and asymptote

2nd: Apply reflection

Reflect over the vertical

Formulas for Compound Interest

For n compounding per year: $A = P \left(1 + \frac{r}{n}\right)^{nt}$ For co

For continuous compounding: $A = Pe^{rt}$

Natural Base: $e \approx 2.718$

A: Account Balance P: Principle (Initial Investment) r: Interest Rate n: Compoundings Per Year t: Time in Years

Logarithmic Form $y = \log_a x \longleftrightarrow x = a^y$ Exponential Form

Important Notes:

Bases are the same both in logarithmic and exponential form.

You can NOT take the log of a negative number.

The most common logarithm has base 10. If there is no base for the logarithm, then it is 10.

Natural Logarithm: $\ln x = \log_e x$

Properties of Logarithms

$$\log_a 1 = 0$$
 because $a^0 = 1$

$$\log_a a = 1$$
 because $a^1 = a$
 $\log_a a^x = x$ and $a^{\log_a x} = x$

If
$$\log_a x = \log_a y$$
, then $x = y$

Properties of Natural Logarithms

$$ln 1 = 0$$
 because $e^0 = 1$

$$ln e = 1$$
 because $e^1 = e$

$$\ln e^x = x$$
 and $e^{\ln x} = x$

If
$$\ln x = \ln y$$
, then $x = y$

Change of Base Formula:
$$\log_a x = \frac{\log x}{\log a}$$
 or $\log_a x = \frac{\ln x}{\ln a}$ Ex: $\log_5 8 = \frac{\log 8}{\log 5} = \frac{\ln 8}{\ln 5}$

Properties of Logarithms

Product Property
$$\log_a xy = \log_a x + \log_a y$$

Quotient Property
$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

Power Property
$$\log_a x^y = y \log_a x$$