Chapter 3 Summary Sheet

Angle Pair Relationships

Parallel Lines and Transversal

Corresponding Angles

$\mathrm{m} \angle 1=\mathrm{m} \angle 5, \quad \mathrm{~m} \angle 2=\mathrm{m} \angle 6$,
$\mathrm{m} \angle 3=\mathrm{m} \angle 7, \mathrm{~m} \angle 4=\mathrm{m} \angle 8$

Alternate Exterior Angles

$$
\mathrm{m} \angle 1=\mathrm{m} \angle 8, \quad \mathrm{~m} \angle 2=\mathrm{m} \angle 7
$$

Alternate Interior Angles

$$
\mathrm{m} \angle 3=\mathrm{m} \angle 6, \quad \mathrm{~m} \angle 4=\mathrm{m} \angle 5
$$

Consecutive Interior Angles

$\mathrm{m} \angle 3+\mathrm{m} \angle 5=180^{\circ}, \quad \mathrm{m} \angle 4+\mathrm{m} \angle 6=180^{\circ}$
No Name

Supplementary

Intersecting Lines

Vertical Angles
$\mathrm{m} \angle 1=\mathrm{m} \angle 4, \quad \mathrm{~m} \angle 2=\mathrm{m} \angle 3$,
$\mathrm{m} \angle 5=\mathrm{m} \angle 8, \quad \mathrm{~m} \angle 6=\mathrm{m} \angle 7$

Linear Pair

$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}, \quad \mathrm{m} \angle 2+\mathrm{m} \angle 4=180^{\circ}$,
$\mathrm{m} \angle 1+\mathrm{m} \angle 3=180^{\circ}, \quad \mathrm{m} \angle 3+\mathrm{m} \angle 4=180^{\circ}$,
$\mathrm{m} \angle 5+\mathrm{m} \angle 6=180^{\circ}, \quad \mathrm{m} \angle 6+\mathrm{m} \angle 8=180^{\circ}$,
$\mathrm{m} \angle 5+\mathrm{m} \angle 7=180^{\circ}, \mathrm{m} \angle 7+\mathrm{m} \angle 8=180^{\circ}$

Transversal - a line that intersects two lines

Interior - between the two parallel lines
Exterior - outside of the two parallel lines
Alternate - opposite sides of the transversal
Consecutive - same side of the transversal

Slope-Intercept Form

$y=m x+b$ where m is the slope and b is the y-intercept

Slope Formula

$$
\mathrm{m}=\frac{\mathrm{y}_{1}-\mathrm{y}_{2}}{\mathrm{x}_{1}-\mathrm{x}_{2}}
$$

Important: To write the equation of a line you must determine what \mathbf{m} and \mathbf{b} are.
Plug m and b into the slope-intercept equation and you're done.
Ex: If $\mathrm{m}=-\frac{1}{2}$ and $\mathrm{b}=3$, then a completed equation would look like $\mathrm{y}=-\frac{1}{2} \mathrm{x}+3$

Slopes of Parallel Lines - are equal

$$
\mathrm{m}_{1}=\mathrm{m}_{2}
$$

Slopes of Perpendicular Lines - are opposite reciprocals
If $\mathrm{m}_{1}=\frac{\mathrm{a}}{\mathrm{b}}$, then $\mathrm{m}_{2}=-\frac{\mathrm{b}}{\mathrm{a}} \quad$ Also, $\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1$

Statements and Reasons for Proofs

Information/Diagram Given	Statement	Reason			
	$\begin{gathered} \angle 1 \cong \angle 2 \\ \text { or } \\ \mathrm{m} \angle 1=\mathrm{m} \angle 2 \end{gathered}$	Alternate Interior Angles			
$\angle 1 \cong \angle 2$ or	$\mathrm{m} \\| \mathrm{k}$	Alternate Interior Angles Converse			
$\mathrm{q} \\| \mathrm{r}$ and $\mathrm{r} \\| \mathrm{s}$	$\mathrm{q} \\| \mathrm{s}$	Transitive Property of Parallel Lines			

