Chapter 2 Summary Sheet

Quadratics

Quadratic Function: $y = ax^2 + bx + c$ Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Standard Form: $y = a(x-h)^2 + k$ Axis of Symmetry: $x = -\frac{b}{2a}$

Vertex: (h,k) or $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

Graphing Polynomial Functions

Step 1: Find the zeros.

Step 2: If multiplicity of a zero is ODD, then the graph passes through the zero. If multiplicity of a zero is EVEN, then the graph touches the zero and bounces off.

Step 3: Make a T-chart and find extra points for a more precise graph

If n is even for $f(x) = x^n$, then the graph is a U-shaped

If n is odd for $f(x) = x^n$, then the graph is a S-shaped.

Complex Numbers Standard Form: a + bi

 $i^2 = -1$

Finding Rational Zeros Algorithm

Factors of Constant
Factors of Leading Coefficient **Step 1:** Determine possible zeros:

Step 2: 3 Choices for Testing

1) Evaluate Algebraically

2) Synthetic Division

3) Use TI Table or Trace tool

Graphing Rational Functions

Step 1: Find the asymptotes and graph them with a dashed line

Vertical Asymptote(s): Find the zero(s) of the denominator

Horizontal Asymptote(s): 1) If the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is y = 0.

2) If the degree of the numerator and denominator are the same, then the horizontal asymptote is the ratio of the leading coefficients.

Slant Asymptote: If the degree of the numerator is greater than the degree of the denominator, then there is a slant asymptote which is the quotient.

Step 2: Create a T-Chart and find points on opposite sides of the vertical asymptote(s).

Nonlinear Inqualities

Step 1: Find the critical numbers. In other words, simply find the zeros.

Step 2: Test values between zeros for being positive or negative

Step 3: Determine which intervals satisfy the original inequality.