Chapter 2 Summary Sheet ## **Statements and Reasons for Proofs** | Information/Diagram | Statement | Reason | |-------------------------------------|-------------------------------------|------------------------------| | A B C | AC = AB + BC | Segment Addition Postulate | | B | m∠ABC = m∠ABD + m∠DBC | Angle Addition Postulate | | B is the midpoint of AC A B C | AB = BC | Definition of Midpoint | | BD bisects ∠ABC A D C | m∠ABD = m∠DBC | Definition of Angle Bisector | | 1 2 | m∠1 = m∠2 | Vertical Angles | | 1 2 | m∠1+ m∠2 = 180° | Linear Pair | | $\overline{AB} \cong \overline{CD}$ | AB = CD | Definition of Congruence | | AB = CD | $\overline{AB} \cong \overline{CD}$ | Definition of Congruence | | AB = CD and $CD = EF$ | AB = EF | Transitive Property | ## **Helpful Tips for Completing a Proof:** 1. If possible, always label the diagram with the given information or newly acquired information. Labeling a diagram can make useful information stand out, which may have not otherwise. Ex: <u>Tick marks</u> for congruent segments, <u>arcs</u> for congruent angles, and <u>numbers</u> for side lengths. **2.** Analyze <u>ALL</u> the previous statements when trying to determine how to get the next statement in the proof. For example, sometimes the 5th statement can be constructed using the 1st and 4th. Addition PropertyIf a = b, then a + c = b + cSubtraction PropertyIf a = b, then a - c = b - cMultiplication PropertyIf a = b, then ac = bc **Division Property** If a = b and $c \ne 0$, then $a \div c = b \div c$ **Substitution Property** If a = b, then a can be substituted for b in any equation or expression **Distributive Property** a(b+c) = ab + ac **Simplification** If x = 5 + 4, then x = 9 **Reflexive Property (Reflection)** For any real number a, a = a **Transitive Property (Train)** If a = b and b = c, then a = c.