Chapter 1 Summary Sheet

Area and Perimeter Formula's

Square and Rectangle
$\mathrm{A}=\ell \mathrm{W}$ or $\mathrm{A}=\mathrm{bh}$

Triangle
$\mathrm{A}=\frac{1}{2} \mathrm{bh}$

Circle
$\mathrm{A}=\pi \mathrm{r}^{2} \quad \mathrm{C}=2 \pi \mathrm{r} \quad \pi \approx 3.14$
Note: Circumference is the perimeter of a circle.
Radius - distance from the center to the outside of the circle Diameter - distance across a circle though its center

Point A
Line $A B(\overrightarrow{\mathrm{AB}})$ or line k

Segment $A B(\overline{\mathrm{AB}})$
Ray $\mathrm{AB}(\overrightarrow{\mathrm{AB}})$

Plane M or plane ABC

Angle A ($\angle \mathrm{A}, \angle \mathrm{BAC}$, or $\angle \mathrm{CAB}$)

Collinear - points that lie on the same line
Coplanar - points or lines that lie on the same plane

Distance Formula

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Midpoint Formula

$$
\mathrm{M}\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)
$$

Classifying Angles

Acute angle
$0^{\circ}<\boldsymbol{m} \angle A<90^{\circ}$

Right angle $m \angle A=90^{\circ}$

Obtuse angle $90^{\circ}<\boldsymbol{m} \angle A<180^{\circ}$

Straight angle

$$
m \angle A=180^{\circ}
$$

Angle Pair Relationships

$\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$

$\angle 1$ and $\angle 3$ are vertical angles $\angle 2$ and $\angle 4$ are vertical angles
$\mathrm{m} \angle 1=\mathrm{m} \angle 3$
$\mathrm{m} \angle 2=\mathrm{m} \angle 4$

Complementary - two angles whose sum is 90°
Supplementary - two angles whose sum is $180^{\circ} \rightarrow$ How to Remember: Turn 180° to say "sup" to friend behind you Bisect - to cut into two equal pieces
Midpoint - a point that bisects a segment

Congruent (Symbol: \cong) - two figures that have the same shape or that overlap perfectly
Equal (Symbol: =) - having the same numerical quantity

Congruent Segments (Tick Marks)
$\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$
$\mathrm{AB}=\mathrm{CD}$

Congruent Angles (Arcs)

$$
\begin{aligned}
\angle \mathrm{ABC} & \cong \angle \mathrm{DEF} \\
\mathrm{~m} \angle \mathrm{ABC} & =\mathrm{m} \angle \mathrm{DEF}
\end{aligned}
$$

Polygon - a closed figure formed by three or more segments joined at their endpoints.

Number of Sides	Type of Polygon (Classification)	Diagram
3	Triangle	
4	Quadrilateral	
5	Hexagon	
6	Heptagon	
7		

Number of Sides	Type of Polygon (Classification)	Diagram
8	Octagon	Nonagon
9	Decagon	
10	Dodecagon	
12		

Equilateral - all sides are congruent Equiangular - all angles are congruent
Regular - both equilateral and equiangular

