Two angles are \qquad if their measures add up to 90°.

Two angles are \qquad if their measures add up to 180°.

Ex 1:

Name a pair of complementary angles and a pair of supplementary angles. Answers may vary.
a)

b)

Complementary Angles: \qquad Complementary Angles: \qquad
Supplementary Angles: \qquad Supplementary Angles: \qquad

Ex 2:

a) $\angle 1$ and $\angle 2$ are complementary angles.

Given $\mathrm{m} \angle 1=50^{\circ}$, find $\mathrm{m} \angle 2$.
b) $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are supplementary angles.

Given $\mathrm{m} \angle \mathrm{A}=110^{\circ}$, find $\mathrm{m} \angle \mathrm{B}$.

Ex 3:

$\angle \mathrm{A}$ and $\angle \mathrm{B}$ are complementary and $\angle \mathrm{B}$ and $\angle \mathrm{C}$ are supplementary.
a) If $\mathrm{m} \angle \mathrm{A}=30^{\circ}$, then
$\mathrm{m} \angle \mathrm{B}=$ \qquad and $\mathrm{m} \angle \mathrm{C}=$ \qquad
b) If $\mathrm{m} \angle \mathrm{C}=100^{\circ}$, then
$\mathrm{m} \angle \mathrm{B}=$ \qquad and $\mathrm{m} \angle \mathrm{A}=$ \qquad

Ex 4:

a) $\angle \mathrm{C}$ is a complement of $\angle \mathrm{D}$. Find $\mathrm{m} \angle \mathrm{C}$.

$$
\mathrm{m} \angle \mathrm{C}=(3 \mathrm{x}+2)^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{D}=(\mathrm{x}-4)^{\circ}
$$

b) $\angle \mathrm{A}$ is a supplement of $\angle \mathrm{B}$. Find $\mathrm{m} \angle \mathrm{B}$.
$m \angle A=(2 x-20)^{\circ}$
$\mathrm{m} \angle \mathrm{B}=(3 \mathrm{x}+5)^{\circ}$

Two angles are \qquad angles if their sides are formed by two intersecting lines, but they do not share a side in common. Vertical angles are \qquad in measure. Ex:

$\angle 1$ and $\angle 3$ are vertical angles $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
$\angle 2$ and $\angle 4$ are vertical angles $\mathrm{m} \angle 2=\mathrm{m} \angle 4$

Two angles are a \qquad if they share a side in common and their non-common sides form a straight angle. Angles that form a linear pair are supplementary or add up to \qquad _.
Ex:

$\angle 5$ and $\angle 6$ are a linear pair $\mathrm{m} \angle 5+\mathrm{m} \angle 6=180$

Ex 5:
Use the figure at the right to answer true or false for the following questions.
a) $\angle 1$ and $\angle 3$ vertical angles.
b) $\angle 5$ and $\angle 3$ vertical angles.
c) $\angle 5$ and $\angle 4$ vertical angles.
d) $\angle 1$ and $\angle 2$ vertical angles.
e) $\angle 1$ and $\angle 2$ a linear pair.
f) $\angle 2$ and $\angle 3$ a linear pair.
g) $\angle 1$ and $\angle 4$ a linear pair.
h) $\angle 1$ and $\angle 5$ a linear pair.

Ex 6:

