Geometry Note-Taking Guide

SECTION 1.3 - Points, Lines, and Planes

A \qquad has no dimension. It is represented by a small dot and named using a capital letter.
Ex:

Point A

A \qquad extends in one dimension and is always straight. Through any two points there is exactly one line. A line can be given a lower case letter name or also be defined by two points on the line. Ex:

Line $\overrightarrow{\mathrm{AB}}$ or line k

A \qquad extends in two dimensions and is always flat. Through any three non-collinear points there is exactly one plane. A plane can be name by a letter in the corner or also be named by three non-collinear points. Ex:

Plane M or plane ABC

Points are \qquad
if they lie on the same line.
Ex:

Points D, E and F are collinear

Points are \qquad
if they lie on the same plane.
Ex:

Points A, B and C are coplanar

Points are \qquad
if they do \qquad lie on the same line.
Ex:

Points X, Y and Z are noncollinear

Points are \qquad if they do \qquad lie on the same plane.
Ex:

Points R, S, T, and U are noncoplanar

Consider $\stackrel{\rightharpoonup}{\mathrm{AB}}$.

A \qquad is a portion
of a line consisting of \qquad endpoints.

A \qquad is a portion of a line with
\qquad endpoint and extends to infinity in one direction.
Important: When naming a ray the first letter is the starting point.

Ex: Line $\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{BA}}$

Ex: Segment $\overline{\mathrm{AB}}$ or $\overline{\mathrm{BA}}$

Ex: Ray $\overrightarrow{\mathrm{AB}}$
Ray $\overrightarrow{\mathrm{BA}}$

Two or more geometric figures \qquad or \qquad
more points in common.
Ex: a)

$\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$
intersect at point E
b)

Line k and plane M intersect at point A

Plane M and plane P intersect at $\overrightarrow{\mathrm{AB}}$

Ex 1:

Determine whether the given statement is true or false.
a) Points S, P, and T are collinear.
b) Points S, P, T, and V are noncoplanar.
c) Points S, P, Q, and V are coplaner.
d) Points S, P, and Vare noncollinear.
e) Line n and line m intersect at point P.
f) $\overparen{\mathrm{PQ}}$ and plane R intersect at point S .

g) Line m and plane R intersect at point T .

Ex 2:

Decide whether the statement is true or false.
a) Points A, C, and E are collinear.
b) Points A, B, C and F are coplanar.
c) Point E, C, and D are noncollinear.
d) Points A, C, D, and F are coplanar.
e) Point A lies on $\overleftrightarrow{\mathrm{CB}}$.
f) Point B lies on $\overrightarrow{C A}$.
g) Point F lies on plane P.
h) $\overparen{\mathrm{AB}}$ and line k are the same line.
i) $\overline{\mathrm{CE}}$ and $\overline{\mathrm{CD}}$ are part of line ℓ.

j) The intersection of plane M and plane P is $\overrightarrow{\mathrm{ED}}$.
k) The intersection of plane M and plane P is $\overrightarrow{\mathrm{AB}}$.

1) $\overleftrightarrow{\mathrm{AB}}$ and line ℓ intersect.
m) $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CD}}$ intersect at point E .
n) $\overline{\mathrm{AF}}$ and $\overline{\mathrm{CD}}$ intersect at point E .
