Geometry
Chapter 1 Review

1. 1 foot $(\mathrm{ft})=$ \qquad inches (in) 2. 1 centimeter $(\mathrm{cm})=$ \qquad millimeters (mm)
2. $1 \operatorname{yard}(\mathrm{yd})=$ \qquad feet (ft)
3. 1 meter $(\mathrm{m})=$ \qquad centimeters (cm)
4. 1 mile $(\mathrm{mi})=$ \qquad feet (ft)
5. 1 kilometer $(\mathrm{km})=$ \qquad meters (m)
6. The distance around a two-dimensional object is called the \qquad .
7. A quantity that is measured in square units and expresses the size of a surface is called \qquad .
8. The formula for the area of a square or rectangle is \qquad or \qquad .
9. The height of a triangle is always \qquad to its base
10. The formula for the area of a triangle is \qquad .
11. The distance from the center of the circle to its edge is called the \qquad .
12. The distance across a circle passing through the center is the \qquad .
13. The perimeter of a circle is more specifically called the \qquad .
14. The symbol π is called \qquad , which is approximately equal to (\approx) \qquad .
15. The formula for the circumference of a circle is \qquad .
16. The formula for the area of a circle is \qquad .
17. A \qquad has no dimension and is represented by a dot.
18. A \qquad is one-dimensional and is always straight.
19. A \qquad is two-dimensional and is always flat.
20. Points are \qquad if they lie on the same line.
21. Points are \qquad if they lie on the same plane.
22. A \qquad is a portion of a line consisting of two endpoints.
23. A \qquad is a portion of a line that has one endpoint and extends into infinity in one direction.
24. Two geometric figures \qquad or cross if they share one or more points in common.
25. Two lines are \qquad if they are coplanar, but do not intersect.
26. Two lines are \qquad if they intersect to form a right angle $\left(90^{\circ}\right)$ angle.
27. Two line are \qquad if they are noncoplanar and do not intersect.
28. A \qquad is a number that is only divisible by 1 and itself.
29. The first five primes are \qquad ,__, , , , and \qquad .
30. The symbol $\sqrt{ }$ is called a \qquad .
31. The most common radical in Geometry is the \qquad $(\sqrt[2]{ })$
32. The \qquad is a method used to simplify radicals.
33. A segment running left and right can be referred to as a \qquad segment.
34. A segment running up and down can be referred to as a \qquad segment.
35. You can NOT count the length of a segment that runs \qquad .
36. The distance formula is: \qquad .
37. \qquad means to cut in half.
38. A \qquad is a point on a segment that bisects the segment.
39. The symbol for an angle is \qquad .
40. The point where the two sides of an angle meet is called the \qquad .
41. The measure of an angle is written in units called \qquad .
42. An angle can have a measure between \qquad and \qquad degrees.
43. The four types of angle classifications are: \qquad , \qquad , \qquad and \qquad
44. The notation $\mathrm{m} \angle \mathrm{ABC}=64^{\circ}$ means \qquad -.
45. In Geometry, the word \qquad (Symbol: \qquad) roughly means to be equal.
46. \qquad are used on a diagram to show segments are congruent.
47. \qquad are used to show angles are congruent.
48. Two angles are \qquad if their measures add up to 90°.
49. Two angles are \qquad if their measures add up to 180°.
50. Two angles are \qquad angles if their sides are formed by two intersecting lines, but they do not share a side in common. Vertical angles are \qquad in measure.
51. Two angles are a \qquad if they share a side in common and their non-common sides form a straight angle. Angles that form a linear pair are supplementary or add up to \qquad -.
52. $6 \mathrm{ft}=$ \qquad yd
53. 98 in. $=$ \qquad ft
54. $2 \mathrm{mi}=$ \qquad ft

Find the perimeter and area of the figure.

57.

58.

60.

61.

Find the perimeter and area of the figure.
62.

63.

64.

Find the perimeter and area of the figure.

68. The perimeter of a rectangle is 38 ft . and its length is 10 ft . Find the width.
70. The area of a triangle is $48 \mathrm{~m}^{2}$ and its base is 12 m . Find its height.
69. The area of a rectangle is 63 in. ${ }^{2}$ and its height is 7 in . What is the length of the base?
71. The area of a triangle is $18 \mathrm{ft}^{2}$ and its height is 9 ft . Find the base.
72. The circumference of a circle is 32π square units. What is the radius?
74. How many square inches are there in 1 square foot.
76. The length of a rectangle is three more than twice the width. Given the perimeter is 36 ft , find the dimensions (width and length) of the rectangle.
73. The area of a circle is $49 \pi \mathrm{mi}^{2}$. Find its circumference.

Find the area of the figure on the coordinate plane.
75.

77. A sewing club is making a quilt consisting of 25 squares with each side of the square 30 centimeters. If the quilt has five rows and five columns, what is the perimeter of the quilt?

Find the area of the figure. Leave answer in terms of π.

79.

Use the diagram to the right to complete the following problems.
80. Give two other names for $\overrightarrow{\mathrm{AB}}$.
81. Name three collinear points.
82. Give another name for plane F.
83. Give another name for $\overline{\mathrm{CD}}$.
84. Name three rays with endpoint B.
85. Give another name for $\overrightarrow{C D}$.
86. Name the intersection of plane F and $\stackrel{\rightharpoonup}{\mathrm{CD}}$.

The figure to the right is a right prism. Complete each statement with parallel, perpendicular, or skew.
87. $\overleftrightarrow{\mathrm{WQ}}$ and $\overleftrightarrow{\mathrm{ZR}}$ are \qquad .
88. $\overrightarrow{X Y}$ and $\overleftrightarrow{Y S}$ are \qquad .
89. $\overleftrightarrow{W Z}$ and $\overleftrightarrow{\mathrm{RS}}$ are \qquad .
90. $\stackrel{\rightharpoonup}{\mathrm{QT}}$ and $\stackrel{\mathrm{XT}}{ }$ are \qquad .
91. $\stackrel{\mathrm{WQ}}{ }$ and $\overleftrightarrow{\mathrm{TS}}$ are \qquad .
92. $\overrightarrow{\mathrm{XY}}$ and $\overleftrightarrow{\mathrm{TS}}$ are \qquad .

93. $\overparen{\mathrm{YZ}}$ and $\overleftrightarrow{\mathrm{TQ}}$ are \qquad .
94. Plane WXT and plane ZRS are \qquad .
95. Plane WXZ and plane XTS are \qquad .
96. Find the length of segment $\overline{X Y}$ given the coordinates of its endpoints.
$X(1,7) \quad Y(-2,3)$
97. Find the distance between the endpoints of $\overline{\mathrm{AB}}$.

$$
\mathrm{A}(2,3) \quad \mathrm{B}(4,-1)
$$

98. Find the midpoint of $\overline{\mathrm{AB}}$ given its endpoints. $\mathrm{A}(2,4) \quad \mathrm{B}(-3,6)$
99. Given the midpoint $\mathrm{M}\left(-\frac{5}{2}, 1\right)$ and an endpoint $F(2,-1)$ of $\overline{\mathrm{FG}}$, find the other endpoint.
100. State all the different names for the angle. 101. State all the different names for the dotted angle.

Shade the indicated angle.
102. $\angle \mathrm{ACB}$

103. $\angle \mathrm{MLP}$

Label the diagram.
104. $\angle \mathrm{GFH} \cong \angle \mathrm{IHF}$

108. $\mathrm{m} \angle \mathrm{XYZ}=152^{\circ}$

Classify each angle.
105. $\mathrm{m} \angle \mathrm{ABC}=89^{\circ}$
106. $\mathrm{m} \angle 3=180^{\circ}$
107. $\mathrm{m} \angle \mathrm{F}=90^{\circ}$
109. B is between point A and C. Find BC.

$$
\begin{aligned}
& \mathrm{AB}=2 \mathrm{x}+10 \\
& \mathrm{BC}=\mathrm{x}-4 \\
& \mathrm{AC}=21
\end{aligned}
$$

110. M is the midpoint $A B$. Find $A M$.

$$
\begin{aligned}
& A M=x+15 \\
& M B=4 x-45
\end{aligned}
$$

111. Find $m \angle D B C$.

112. Given $\mathrm{m} \angle \mathrm{FJH}=168^{\circ}$, find $\mathrm{m} \angle \mathrm{FJG}$.

113. $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$. Find $\mathrm{m} \angle \mathrm{ABC}$.

114. $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$. Find $\mathrm{m} \angle \mathrm{ABC}$.

115. $\angle \mathrm{C}$ is a complement of $\angle \mathrm{D}$. Find $\mathrm{m} \angle \mathrm{C}$. 116. $\angle \mathrm{A}$ is a supplement of $\angle \mathrm{B}$. Find $\mathrm{m} \angle \mathrm{B}$.

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{C}=(15 \mathrm{x}+3)^{\circ} \\
& \mathrm{m} \angle \mathrm{D}=(5 \mathrm{x}-13)^{\circ}
\end{aligned}
$$

$m \angle A=(6 x+72)^{\circ}$
$\mathrm{m} \angle \mathrm{B}=(2 \mathrm{x}+28)^{\circ}$

Find the value of the variable(s).

119.

120

Answer Key:

1) $12 \quad$ 2) 10
2) 3
3) 100
4) 5,280
5) $1,000 \quad$ 7) perimeter
6) area
7) $\mathrm{A}=\mathrm{bh}$ or $\mathrm{A}=\ell \mathrm{w}$
8) perpendicular
9) $A=\frac{b h}{2}$
10) radius
11) diameter
12) circumference
13) pi, 3.14
14) $\mathrm{C}=2 \pi \mathrm{r}$
15) $\mathrm{A}=\pi r^{2}$
16) point
17) line
18) plane
19) collinear
20) coplanar
21) segment
22) ray
23) intersect
24) parallel
25) perpendicular
26) skew
27) prime
28) $2,3,5,7$, and 11
29) radical
30) square root
31) prime factor tree
32) horizontal 35) vertical 36) diagonally 37) $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \quad$ 38) Bisect \quad 39) midpoint
33) \angle 41) vertex 42) degrees 43) 0° to 180° 44) acute, obtuse, right, and straight
34) "The measure of angle ABC is 64 degrees."
35) congruent, \cong 47) Tick marks 48) Arcs 49) complementary 50) supplementary 51) vertical, equal
36) linear pair, 180° 53) 2 yd 54) $8 \frac{1}{6} \mathrm{ft}$
37) $10,560 \mathrm{ft}$
38) $\mathrm{P}=32 \mathrm{yd}, \mathrm{A}=48 \mathrm{yd}^{2}$
39) $\mathrm{P}=30$ units, $\mathrm{A}=37.5$ units 2
40) $\mathrm{P}=24$ units, $\mathrm{A}=22$ units 2
41) $\mathrm{P}=30 \mathrm{in} ., \mathrm{A}=30 \mathrm{in} .^{2}$
42) $\mathrm{P}=21$ units, $\mathrm{A}=10$ units 2
43) $\mathrm{P}=35$ units, $\mathrm{A}=42$ units 2
44) $\mathrm{P}=56$ units, $\mathrm{A}=80$ units 2
45) $\mathrm{P}=38$ units, $\mathrm{A}=38$ units 2
46) $\mathrm{P}=28$ units, $\mathrm{A}=30$ units 2
47) $\mathrm{P}=74$ units, $\mathrm{A}=192$ units 2
48) $\mathrm{C}=22 \pi \mathrm{ft}, \mathrm{A}=121 \pi \mathrm{ft}^{2}$
49) $\mathrm{C}=50.2 \mathrm{~m}, \mathrm{~A}=201.0 \mathrm{~m}^{2}$
50) $\mathrm{w}=9 \mathrm{ft}$
51) $\mathrm{b}=9 \mathrm{in}$.
52) $\mathrm{h}=8 \mathrm{~m}$
53) $\mathrm{b}=4 \mathrm{ft}$
54) $r=16$ units
55) $\mathrm{C}=14 \pi \mathrm{mi}$
56) $\mathrm{A}=144 \mathrm{in} .^{2}$
57) $\mathrm{A}=14$ units
58) $\mathrm{w}=5 \mathrm{ft}, \ell=13 \mathrm{ft} \quad 77) \mathrm{P}=600 \mathrm{~cm}$
59) $\mathrm{A}=4 \pi$ in. ${ }^{2}$ 79) $\mathrm{A}=12 \pi$ in. ${ }^{2}$
60) $\overleftrightarrow{B A}$, line h
61) C, B, D
62) Plane EAB
63) $\overline{\mathrm{DC}}$
64) $\overrightarrow{B C}, \overrightarrow{B A}, \overrightarrow{B D}$
65) $\overrightarrow{\mathrm{CB}}$
66) B
67) parallel ||
68) perpendicular $\perp \mathbf{8 9}$) skew
69) perpendicular \perp 91) skew
70) parallel ||
71) parallel || 94) parallel ||
72) perpendicular \perp 96) $\mathrm{XY}=5$ 97) $\mathrm{AB}=2 \sqrt{5}$
73) $\mathrm{M}\left(-\frac{1}{2}, 5\right)$
74) $\mathrm{G}(-7,3)$ 100) $\angle 1, \angle \mathrm{~B}, \angle \mathrm{ABC}, \angle \mathrm{CBA}$ 101) $\angle \mathrm{DEF}, \angle \mathrm{FED}$

75)

105) acute 106) straight
107) right 108) obtuse 109) $\mathrm{BC}=1$ 110) $\mathrm{AM}=35$ 111) $\mathrm{m} \angle \mathrm{DBC}=62^{\circ} \quad$ 112) $\mathrm{m} \angle \mathrm{FJG}=135^{\circ}$
$\begin{array}{llll}\text { 113) } \mathrm{m} \angle \mathrm{ABC}=80^{\circ} & \text { 114) } \mathrm{m} \angle \mathrm{ABC}=96^{\circ} & \text { 115) } \mathrm{m} \angle \mathrm{C}=78^{\circ} & \text { 116) } \mathrm{m} \angle \mathrm{B}=48^{\circ} \\ \text { 117) } \mathrm{x}=41\end{array}$
$\begin{array}{lll}\text { 118) } \mathrm{x}=10 & \text { 119) } \mathrm{x}=14, \mathrm{y}=20 & \text { 120) } \mathrm{x}=6, \mathrm{y}=24\end{array}$

