\qquad

Assignment 6.1

1. According the Triangle Inequality Theorem, the sum of any two sides of a triangle is greater than the \qquad .
2. Given three segments lengths, if the sum of the two \qquad segments is greater than the third, then a triangle can be constructed.

List the sides in order from shortest to longest.
3. A

4.

5.

List the angles in order from smallest to largest.
6.

7.

8.

Determine if a triangle can be constructed with the given side lengths.
9.3 in., 2 in., 5 in.
10. $4 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$
11. 2 ft ., 5 ft ., 2 ft .
12. Given $B C=4$ and $A C=6$. Find the possible measures of $A B$ in $\triangle A B C$.
13. A triangle has one side of 5 centimeters and another of 13 centimeters.

Describe the possible lengths of the third side.
14. In the figure below, n is a whole number. What is the smallest possible value for n ?

16. The lengths of two sides of the triangle are known.

Which of the following could be the perimeter of the triangle?
15. In the figure below, n is a whole number. What is the largest possible value for n ?

17. Two sides of a triangle measure 17 and 9 . Which of the following cannot be the perimeter of the triangle.

A 35
B 51

C 27

D 40

A 10

B 26

C 20

D 37

Answer Key:

1. third
2. smaller 3. $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{AC}}$
3. $\overline{\mathrm{AC}}, \overline{\mathrm{AB}}, \overline{\mathrm{BC}}$
4. $\overline{\mathrm{AB}}, \overline{\mathrm{AC}} \leftrightarrow \overline{\mathrm{BC}}$
5. $\angle \mathrm{B}, \angle \mathrm{A}, \angle \mathrm{C}$
6. $\angle \mathrm{A} \leftrightarrow \angle \mathrm{B}, \angle \mathrm{C}$
7. $\angle \mathrm{A}, \angle \mathrm{C}, \angle \mathrm{B}$
8. No
9. Yes
10. No
11. $2<\mathrm{AB}<10$
12. $8<\mathrm{x}<18$
$\begin{array}{llll}14.7 & 15.18 & \text { 16. } D & 17 . C\end{array}$
