Geometry **ASSIGNMENT 1.6**

- 1. _____ means to cut in half.
- **2.** A ______ is a point on a segment that bisects the segment.
- **3.** The midpoint formula is: ______.
- **4.** Find the midpoint of \overline{CD} given its endpoints. **5.** Find the midpoint of \overline{AB} given its endpoints.
 - C(-13,-2) D(5,8)

$$A(2,4)$$
 $B(-3,6)$

6. The coordinates of one endpoint, A, and the midpoint, M, of \overline{AB} given. Find the coordinates of the other endpoint.

A(4,-3) M(-1,6)

7. Given the midpoint $M\left(-\frac{5}{2},1\right)$ and an endpoint F(2,-1) of \overline{FG} , find the other endpoint.

8. Find the length of segment \overline{XY} given the coordinates of its endpoints.

$$X(1,7)$$
 $Y(-2,3)$

9. Find the distance between the endpoints of \overline{AB} .

$$A(2,3)$$
 $B(4,-1)$

10. Find the length of \overline{AB} and its midpoint.

Decide whether the statement is true or false.

- 11. Points A, C, and E are collinear.
- 12. Points A, B, C and F are coplanar.
- 13. Point E, C, and D are noncollinear.
- 14. Points A, C, D, and F are coplanar.
- **15.** Point A lies on \overrightarrow{CB} .
- **16.** Point B lies on \overrightarrow{CA} .
- **17.** Point F lies on plane P.
- **18.** \overrightarrow{AB} and line k are the same line.
- **19.** \overline{CE} and \overline{CD} are part of line ℓ ..
- **20.** The intersection of plane M and plane P is \overrightarrow{ED} .
- **21.** The intersection of plane M and plane P is \overrightarrow{AB} .
- **22.** \overrightarrow{AB} and line ℓ intersect.
- **23.** \overrightarrow{CA} and \overrightarrow{CD} intersect at point E.
- **24.** \overline{AF} and \overline{CD} intersect at point E.

Find the circumference and area of the circle.

Leave answer in terms of π .

Find the area of the figure. Leave answer in terms of π .

27.

- **28.** The area of a triangle is 35 m² and its base is 7 m. Find the height.
- **29.** The circumference of a circle is 30π in.. Find its area.

- **30.** The perimeter of a rectangle is 24 inches and its height is 4 inches. What is the area of the rectangle?
- **31.** The length of a rectangle is two more than three times the width. Given the perimeter is 76 ft, find the dimensions (width and length) of the rectangle.

Draw a segment with indicated length.

32.
$$1\frac{3}{16}$$
 in.

Complete the conversion.

36. 19 ft =
$$_$$
___yd

Find the perimeter and area of the figure.

38.

40.

Find the area of the figure.

43.

Find the area of the figure on the coordinate plane.

44.

45. How many square inches are there in two square feet.

Answer Key:

- 1) Bisect
- 2) midpoint
- 3) $M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 4) (-4,3) 5) $\left(-\frac{1}{2}, 5\right)$

- **6**) (-6,15)

- 7) (-7,3) 8) XY = 5 9) AB = $2\sqrt{5}$ 10) AB = $2\sqrt{34}$, M(1,1) 11) False

- **12**) True
- **13**) False
- **14)** False
- **15**) True **16**) False
- **17**) False

- **18**) True **19**) True **20**) False

- **21**) True
- **22**) True
- **23**) False
- **24**) False
- **25**) $C = 12\pi \text{ mm}, A = 36\pi \text{ mm}^2$
- **26)** $C = 18\pi \text{ ft}, A = 81\pi \text{ ft}^2$ **27)** $A = 16\pi \text{ in.}^2$ **28)** h = 10 m **29)** $A = 225\pi \text{ in.}$ **30)** $A = 32 \text{ in.}^2$
- **31)** w = 9 ft, ℓ = 29 ft **32-34)** See Teacher **35)** $6\frac{5}{6}$ ft **36)** $6\frac{1}{3}$ yd **37)** $6\frac{3}{10}$ cm or 6.3 cm

- **38)** $P = 40 \text{ m}, A = 100 \text{ m}^2$ **39)** $P = 38 \text{ in}, A = 84 \text{ in}.^2$ **40)** $P = 21 \text{ units}, A = 10 \text{ units}^2$
- **41)** $A = 42 \text{ units}^2$ **42)** $A = 38 \text{ units}^2$ **43)** $A = 30 \text{ units}^2$ **44)** $A = 30 \text{ units}^2$ **45)** 288 in.^2