Geometry

ASSIGNMENT 1.4

1. Two lines are \qquad if they are coplanar, but do not intersect.
2. Two lines are \qquad if they intersect to form a right angle $\left(90^{\circ}\right)$ angle.
3. Two line are \qquad if they are noncoplanar and do not intersect.

The figure to the right is a right prism. Complete each statement with parallel, perpendicular, or skew.
4. $\overleftrightarrow{\mathrm{WQ}}$ and $\overleftrightarrow{\mathrm{ZR}}$ are \qquad .
5. $\overrightarrow{\mathrm{XY}}$ and $\overleftrightarrow{\mathrm{YS}}$ are \qquad .
6. $\overleftrightarrow{\mathrm{WZ}}$ and $\overleftrightarrow{\mathrm{RS}}$ are \qquad .
7. $\overrightarrow{\mathrm{QT}}$ and $\overrightarrow{\mathrm{XT}}$ are \qquad .
8. $\overrightarrow{\mathrm{WQ}}$ and $\stackrel{\mathrm{TS}}{ }$ are \qquad .
9. $\overleftrightarrow{\mathrm{XY}}$ and $\overleftrightarrow{\mathrm{TS}}$ are \qquad .

10. $\overleftrightarrow{\mathrm{YZ}}$ and $\overleftrightarrow{\mathrm{TQ}}$ are \qquad .
11. Plane WXT and plane ZRS are \qquad .
12. Plane WXZ and plane XTS are \qquad .

Sketch the figure described.
Note: There are many different ways to sketch a figure with the follwing descriptions.
13. Three points that are collinear.
15. Four lines that intersect at one point.
17. Two perpendicular lines.
19. Three segments that all share the same endpoint in common.
16. Three lines with only two points of intersection.
18. Two rays that intersect at their endpoints.
20. A line and a plane that intersect at one point.
21. Two planes that do not intersect.
22. Two planes that intersect in one line.
23. Draw three noncollinear points A, B, and C .

Sketch $\overleftrightarrow{\mathrm{AB}}$. Then add a point D and sketch $\overleftrightarrow{\mathrm{CD}}$ so that $\overleftrightarrow{\mathrm{CD}}$ intersects $\overleftrightarrow{\mathrm{AB}}$ at point B .
Note: There are many different correct diagrams.

Determine whether the given statement is true or false.
25. Points S, P, and T are collinear.
26. Points S, P, T, and V are noncoplanar.
27. Points S, P, Q, and V are coplaner.
28. Points S, P, and Vare noncollinear.
29. Line n and line m intersect at point P.
30. $\overleftrightarrow{\mathrm{PQ}}$ and plane R intersect at point S .
31. Line m and plane R intersect at point T.

Find the circumference and area of the circle.
Leave answer in terms of π.

24. Draw four noncollinear points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . Then sketch $\overline{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}$, and $\overrightarrow{\mathrm{AD}}$.
Note: There are many different correct diagrams.

Find the area of the figure. Leave answer in terms of π.
34.

16 in.
35. The perimeter of a rectangle is 46 ft . and its width is 11 ft . Find the length.
37. The area of a triangle is $30 \mathrm{~m}^{2}$ and its base is 10 m . Find its height.
39. The circumference of a circle is 28π units What is the area?
41. The area of a rectangle is 63 square inches and its height is 9 inches. What is the perimeter of the rectangle?
36. The area of a rectangle is $78 \mathrm{in} .^{2}$ and its height is 6 in. What is the length of the base?
38. The area of a triangle is $27 \mathrm{ft}^{2}$ and its height is 9 ft . Find the base.
40. The area of a circle is $81 \pi \mathrm{mi}^{2}$. Find its circumference.

Draw a segment with indicated length.
43. $1 \frac{5}{16} \mathrm{in}$.
44. 2.4 cm
45. 28 mm

Complete the conversion.
46. 64 in. $=$ \qquad ft
47. $14 \mathrm{ft}=$ \qquad
48. $77 \mathrm{~mm}=$ \qquad cm

Find the perimeter and area of the figure.
49.

50.

51.

Find the area of the figure.
52.

53.

54.

Find the area of the figure on the coordinate plane.
55.

56. How many square inches are in four square feet?

Answer Key:

1) parallel
2) parallel

3) perpendicular
4) skew
5) parallel
6) perpendicular
7) skew
8) perpendicular
9) skew 9) parallel 10) parallel
10) perpendicular

11)

20)

22)

23)

25) True 26) False 27) False
28) True
29) True
30) False
31) False
32) $\mathrm{C}=20 \pi \mathrm{~mm}, \mathrm{~A}=100 \pi \mathrm{~mm}^{2}$
33) $\mathrm{C}=24 \pi \mathrm{ft}, \mathrm{A}=144 \pi \mathrm{ft}^{2}$
34) $\mathrm{A}=32 \pi$ in. 2
35) $\ell=12 \mathrm{ft}$
36) $\mathrm{b}=13 \mathrm{in}$.
37) $h=6 m$
38) $b=6 \mathrm{ft}$
39) $\mathrm{A}=196 \pi \mathrm{ft}$
40) $\mathrm{C}=18 \pi \mathrm{mi}$.
41) $\mathrm{P}=32$ in.
42) $\mathrm{w}=9 \mathrm{ft}, \ell=23 \mathrm{ft}$
43-45) See Teacher
46) $5 \frac{1}{3} \mathrm{ft}$
47) $4 \frac{2}{3} \mathrm{yd}$
48) $7 \frac{7}{10} \mathrm{~cm}$ or 7.7 cm
49) $\mathrm{P}=52 \mathrm{~m}, \mathrm{~A}=169 \mathrm{~m}^{2}$
50) $\mathrm{P}=26$ in., $\mathrm{A}=36$ in. 2
51) $\mathrm{P}=23$ units, $\mathrm{A}=14$ units 2
52) $\mathrm{A}=42$ in. ${ }^{2}$
53) $\mathrm{A}=38$ units 2
54) $\mathrm{A}=30$ units 2
55) $\mathrm{A}=28$ units 2
56) 576 in. ${ }^{2}$

