\qquad

Section 9.3 - Tangents and Secant Properties

Note: Chapter structured differently from book.
In the diagram, line m is called a \qquad because it intersects $\odot \mathrm{P}$ at exactly \qquad point.

Tangent and Radius Theorem

If a line is tangent to a circle, then it is perpendicular to its radius.

Line m is tangent to $\odot \mathrm{A} \leftrightarrow \mathrm{m} \perp \overline{\mathrm{AB}}$

Ex 1:

Determine whether $\overline{\mathrm{AB}}$ is tangent to $\odot \mathrm{C}$.
a)

b)

Find the value of the variable.
c)

$r=$ \qquad

Tangent Segments Theorem

Tangent segments from a common external point are congruent. If $\overline{\mathrm{SR}}$ and $\overline{\mathrm{ST}}$ are tangent segments, then $\overline{\mathrm{SR}} \cong \overline{\mathrm{ST}}$.

Ex 2:
Find the value of the variable. B and D and points of tangency.
a)

$\mathrm{x}=$ \qquad
b)

$x=$ \qquad

In the diagram, line k is called a \qquad because
it intersects \odot P the circle at \qquad points.

| Intersecting Chords | Secant Segment Lengths |
| :--- | :---: | :---: |
| Theorem | |
| Theorem | |
| EA $\cdot \mathrm{EB}=\mathrm{EC} \cdot \mathrm{ED}$ | $(\mathrm{EA})^{2}=\mathrm{EC} \cdot \mathrm{ED}$ |

Ex 3:

Find the value of x.
a)

b)

Ex 4:
Find the value of x.
a)

b)

Ex 5:
Find the value of x.
a)

b)

