Section 9.2 – Chords and Their Properties

Note: Chapter structured differently from book.

In the diagram, segment \overline{AB} with endpoints on the circle

is called a _____.

Segment $\overline{\text{CD}}$ is both a _____ and a ____

Chords and Arc Theorem

If two chords in a circle are congruent, then their corresponding arcs are congruent and vice versa. .

$$\widehat{AB} \cong \widehat{CD} \leftrightarrow \overline{AB} \cong \overline{CD}$$

Ex 1:

Find the indicated measure.

$$\widehat{\text{mAC}} =$$

b)

$$\widehat{\text{mLOJ}} = \underline{\hspace{1cm}}$$

Chords and Perpendicular Bisector Theorem

If one chord is a perpendicular bisector of another chords, then the first chord is a diameter and vice versa.

If $\overline{DF} \perp \overline{EG}$ and $\overline{EH} \cong \overline{HG}$, then \overline{DF} is a diameter.

OR

If \overline{DF} is a diameter and $\overline{EG} \perp \overline{DF}$, then $\overline{EH} \cong \overline{HG}$.

Ex 2:

Find the indicated measure.

a)

b)

$$\widehat{\text{mWXY}} = \underline{\hspace{1cm}}$$

c)

Ex:

The distance from the point to the line is 4 units.

Chords and Distance Theorem

Two chords are congruent if they are equidistant from the center of a circle and vice versa.

$$\overline{AB} \cong \overline{CD} \leftrightarrow EF = EG$$

Ex 3:

Find the indicated measure.

a)

b)

c)

$$\widehat{\text{mAB}} = \underline{\hspace{1cm}}$$

Ex 4:

Find the value of the variable.

a)

b)

c)

