\qquad

Note: Chapter structured differently from book.
In the diagram, segment $\overline{\mathrm{AB}}$ with endpoints on the circle is called a \qquad _.

Segment $\overline{\mathrm{CD}}$ is both a \qquad and a \qquad

Chords and Arc Theorem

If two chords in a circle are congruent, then their corresponding arcs are congruent and vice versa. .

$$
\overparen{\mathrm{AB}} \cong \overparen{\mathrm{CD}} \leftrightarrow \overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}
$$

Ex 1:

Find the indicated measure.

$m \overparen{A C}=$ \qquad
b)

$\mathrm{QR}=$ \qquad
c)

$\mathrm{m} \widehat{\mathrm{LOJ}}=$ \qquad

Chords and Perpendicular Bisector Theorem

If one chord is a perpendicular bisector of another chords, then the first chord is a diameter and vice versa.

If $\overline{\mathrm{DF}} \perp \overline{\mathrm{EG}}$ and $\overline{\mathrm{EH}} \cong \overline{\mathrm{HG}}$, then $\overline{\mathrm{DF}}$ is a diameter.
OR
If $\overline{\mathrm{DF}}$ is a diameter and $\mathrm{EG} \perp \mathrm{DF}$, then $\overline{\mathrm{EH}} \cong \overline{\mathrm{HG}}$.

Ex 2:

Find the indicated measure.
a)

$\mathrm{EC}=$ \qquad
b)

$m \widehat{W X Y}=$ \qquad
c)

$\mathrm{XV}=$ \qquad
EC

The distance from a point to a line is the length of the \qquad segment from the point to the line.

Ex:

The distance from the point to the line is $\mathbf{4}$ units.

Chords and Distance Theorem

Two chords are congruent if they are equidistant from the center of a circle and vice versa.

$$
\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}} \leftrightarrow \mathrm{EF}=\mathrm{EG}
$$

Ex 3:

Find the indicated measure.
a)

b)

c)

$C B=$ \qquad
$\mathrm{VI}=$ \qquad

$$
m \overparen{\mathrm{AB}}=
$$

Ex 4:

Find the value of the variable.
a)

b)

$\mathrm{x}=$ \qquad

$$
x=
$$

c)

$\mathrm{x}=$ \qquad

