\qquad

Section 9.1 - Central and Inscribed Angles

A \qquad angle is an angle whose vertex lies on the \qquad of a circle.

The measure of the central angle $\angle \mathrm{ACB}$ and its
\qquad arc $\overparen{\mathrm{AB}}$ are \qquad
An \qquad angle is an angle whose vertex lies on the \qquad of a circle.

The measure of the inscribed angle $\angle \mathrm{ADB}$ is \qquad
$\mathrm{m} \angle \mathrm{ACB}=$ \qquad

$$
\begin{aligned}
\mathrm{m} \overparen{\mathrm{AB}} & = \\
\mathrm{m} \angle \mathrm{ADB} & =
\end{aligned}
$$ the measure of its intercepted arc $\overparen{A B}$.

Note: Chapter structured differently from book.

A ACB and its

Ex 1:

Find the indicated measure and state if it is an arc, central angle, or inscribed angle.
a)

b)

c)

$m \overparen{A B}=$ \qquad
$\mathrm{m} \angle \mathrm{DFE}=$ \qquad
$\mathrm{m} \angle \mathrm{QSR}=$ \qquad
\qquad
\qquad
\qquad

Important: When an arc is described using two points, always refer to the shorter arc.
d)

e)

f)

$\mathrm{m} \overparen{W X}=$ \qquad
$\mathrm{m} \angle \mathrm{KML}=$ \qquad ,
-
$\mathrm{m} \angle \mathrm{ACB}=$ \qquad ,
\qquad
\qquad
$\mathrm{m} \angle \mathrm{AEB}=$ \qquad ,
\qquad
\qquad

Ex 2:

Find the indicated measure(s).

$\mathrm{m} \angle \mathrm{KOL}=$ \qquad
b)

$m \overparen{R S T}=$ \qquad
Solve for x .
c)

\qquad
$\mathrm{x}=$
$m \overparen{R S}=$ \qquad

Inscribed Right Triangle Theorem

If a triangle is inscribed in a circle such that one of the sides of the triangle is the diameter of the circle, then the triangle is a right triangle.

Inscribed Quadrilateral Theorem

If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Ex 3:

a)

b)

c)

