Section 8.2 – Properties of Parallelograms

A is a quadrilateral with both pairs of opposite sides parallel.

The symbol used for a parallelogram is \square . In the diagram for $\square PQRS$, $\overline{PQ} \parallel \overline{RS}$ and $\overline{QR} \parallel \overline{SP}$.

Note: Label Diagram

Properties of a Parallelogram

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

$$\overline{PQ} \cong \overline{RS}$$
 and $\overline{SP} \cong \overline{QR}$

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

$$\angle P \cong \angle R$$
 and $\angle Q \cong \angle S$

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

$$m\angle P + m\angle Q = 180^{\circ}, m\angle Q + m\angle R = 180^{\circ},$$

 $m\angle R + m\angle S = 180^{\circ}, m\angle S + m\angle P = 180^{\circ}$

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$\overline{QM} \cong \overline{SM}$$
 and $\overline{PM} \cong \overline{RM}$

Ex 1:

Find the value of the variable(s) for the parallelogram.

c)

d)

Ex 2:

Find the value of each variable in the parallelogram.

a)

Ex 3:

Find the measure in parallelogram ABCD.

- **a**) DE =
- **b**) BC =
- $\mathbf{c}) \text{ m} \angle ABC =$
- $\mathbf{d}) \mathbf{B} \mathbf{A} =$
- e) m∠DCB =
- f) AC =

Ex 4:

Given: □ABCD

Prove: $\triangle ABD \cong \triangle CDB$ **Note:** There are many approaches to solving this proof.

\mathbf{C}	D
Statement	Reason
1. □ ABCD	1. Given
2. $\overline{BA} \cong \overline{CD}$	2
3. ∠CDB ≅ ∠ABD	3
4. $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$	4
5. $\triangle ABD \cong \triangle CDB$	5

Statement	Reason
1. □ ABCD	1. Given
2. ∠C ≅ ∠A	2
3. ∠CBD ≅ ∠ADB	3
4. $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$	4
5. $\triangle ABD \cong \triangle CDB$	5