\qquad
\qquad

Section 7.4 - Trigonometric Ratios

A \qquad is a ratio of the lengths of two sides of a right triangle.

The three basic trigonometric ratios are \qquad , \qquad , \qquad , which are abbreviated as \qquad , \qquad , \qquad , respectively.

Trigonometric Ratios

Let $\triangle \mathrm{ABC}$ be a right triangle. The sine, the cosine, and the tangent of the acute angle $\angle \mathrm{A}$ are defined as follows.

$$
\begin{aligned}
& \sin \mathrm{A}=\frac{\text { side opposite of } \angle \mathrm{A}}{\text { hypotenuse }}=\frac{\mathrm{a}}{\mathrm{c}} \\
& \cos \mathrm{~A}=\frac{\text { side adjacent to } \angle \mathrm{A}}{\text { hypotenuse }}=\frac{\mathrm{b}}{\mathrm{c}} \\
& \tan \mathrm{~A}=\frac{\text { side opposite of } \angle \mathrm{A}}{\text { side adjacent to } \angle \mathrm{A}}=\frac{\mathrm{a}}{\mathrm{~b}}
\end{aligned}
$$

side adjacent to $\angle A$

Acronym to help remember trig ratios:

\qquad

Big Question: What is the purpose of trigonometric ratios?

Trig ratios are only applied to the acute angles of a right triangle. If you know the measure of one acute angle of a right triangle and you know one side length, then you can solve for the other two side lengths.

Ex 1:

a) Label the sides that in relation to $\angle \mathrm{A}$ are opposite, adjacent, and the hypotenuse.
b) Label the sides that in relation to $\angle \mathrm{B}$ are opposite, adjacent, and the hypotenuse.

Ex 2:
Find the sine, cosine, and tangent of angle A and angle B.

Ex 3:

Find the value of each variable.
a)

c)

e)

f)

Ex 4:

a) Approximately how many feet tall is the streetlight?

b) In the figure below, $\sin A=0.7$.

What is the length of $\overline{A C}$?

c) Right triangle $A B C$ is pictured below.
d) In the figure below, if $\sin x=\frac{5}{13}$, what are
$\cos x$ and $\tan x$?

Which equation gives the correct value for $B C$?

A $\quad \sin 32^{\circ}=\frac{B C}{8.2}$
B $\quad \cos 32^{\circ}=\frac{B C}{10.6}$
C $\quad \tan 58^{\circ}=\frac{8.2}{B C}$
D $\quad \sin 58^{\circ}=\frac{B C}{10.6}$

