\qquad
\qquad

Section 7.3 - Special Right Triangles

The $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times as long as each leg.

$$
\text { Leg } \cdot \sqrt{2}=\text { Hypotenuse }
$$

Leg x

The $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle
In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$
\begin{aligned}
\text { Short Leg } \cdot \sqrt{3} & =\text { Long leg } \\
\text { Short Leg } \cdot 2 & =\text { Hypotenuse }
\end{aligned}
$$

Long Leg

Important Note: The short leg is opposite of the 30° angle.
The long leg is opposite of the 60° angle.

For a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the leg times \qquad is equal to the hypotenuse.

For a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the short leg times \qquad is equal to the long leg.
For a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the short leg times \qquad is equal to the hypotenuse.

Ex 1:

Find the value of the variable(s).
a)

b)

c)

STUDENT PRACTICE:

d)

e)

f)

Ex 2:

Find the value of the variable(s).
a)

b)

c)

Getting a fraction to NOT have a denominator that is a radical is called

Ex 3:

Find the value of the variable(s).
a)

b) $\frac{\mathrm{x}}{\square}$

Ex 4:

a) Find the area of the regular triangle.
b) Find the area of the triangle.

c) The altitude (height) of an equilateral triangle is 9 cm . Find the length of a side of the triangle.

Ex 5:

a) The perimeter of a square is 28 inches. Find the length of the diagonal.
b) The diagonal of a square is 6 meters. Find the area of the square.

