\qquad
\qquad

Section 7.2 - Proving Triangles are Right, Acute, or Obtuse

Proving a Triangle is a Right Triangle

If $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Proving a Triangle is an Acute Triangle
If $a^{2}+b^{2}>c^{2}$, then the triangle is an acute triangle.
Note: A common mistake is thinking that
"greater than" ($>$) means obtuse. Think the opposite.

Proving a Triangle is an Obtuse Triangle

If $\mathrm{a}^{2}+\mathrm{b}^{2}<\mathrm{c}^{2}$, then the triangle is an obtuse triangle.
Note: A common mistake is thinking that "less than" ($<$) means acute. Think the opposite.

Important: a and b are always the smallest values and c is the largest.

Ex 1:

Classify a triangle with the given side lengths as right, acute, or obtuse.
Note: The side lengths are listed from smallest to largest.
a) $6,8,10$
b) $6,6,10$
c) $7,9,11$
d) $\sqrt{8}, 4,6$
e) $2 \sqrt{3}, \sqrt{13}, 5$
f) $\sqrt{6}, \sqrt{8}, \sqrt{10}$

Ex 2:

The sides and classification of a triangle are given below. The length of the longest side is the integer given. What value(s) of x make the triangle?
a) $x, x, 8$; right
b) $x, x, 6$; acute
c) $x, 3 x, 10$; obtuse

