\qquad
\qquad

Section 7.1 - The Pythagorean Theorem

Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

$$
\begin{aligned}
(\mathrm{leg})^{2}+(\mathrm{leg})^{2} & =(\text { hypotenuse })^{2} \\
\mathbf{a}^{2}+\mathbf{b}^{2} & =\mathrm{c}^{2}
\end{aligned}
$$

Important: 1) The hypotenuse is always opposite of the right angle,
2) it is the largest length, and
3) it is always associated with the variable c, in the equation $a^{2}+b^{2}=c^{2}$.

Ex 1:

Find the missing side length of the right triangle.
a)

b)

c)

A \qquad is a set of three whole numbers a, b, and c that satisfy the equation $a^{2}+b^{2}=c^{2}$. For example, the whole numbers 3,4 , and 5 form a Pythagorean triple because $3^{2}+4^{2}=5^{2}$.

Most Common Pythagorean Triples:

Important: Watch for Pythagorean Triples in disguise
Ex: 6, 8, $10 \rightarrow 2(3), 2(4), 2(5)$
or multiples of Pythagorean Triples

$$
9,12,15 \longrightarrow 3(\mathbf{3}), 3(\mathbf{4}), 3(\mathbf{5})
$$

$$
10,24,26 \rightarrow 2(\mathbf{5}), 2(\mathbf{1 2}), 2(\mathbf{1 3})
$$

Ex 2:

Find the unknown side length of the right triangle by using Pythagorean Triples.
a)

b)

c)

Ex 3:

Find the unknown side length of the right triangle.
(a)
b)

c)

Ex 4:

Find the value of x.

b)

Ex 5:
Find the area of the figure.
a)

b)

Ex 6:

The figure below is a cube with side lengths 5 units. Find FC and FD.

