\qquad

Section 6.7 - Similar Right Triangles

The height of a triangle can also be referred to as the \qquad .

Recall:

If two triangles are similar, then their side lengths are \qquad .
In other words, the ratios of their corresponding sides are \qquad .
Ex: Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, then $\angle \mathrm{A} \cong \angle \mathrm{D}, \angle \mathrm{B} \cong \angle \mathrm{E}$, and $\angle \mathrm{C} \cong \angle \mathrm{F}$ and most important $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{AC}}{\mathrm{DF}}$.
$\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{3}{6}=\frac{1}{2}$

$$
\begin{aligned}
& \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{4}{8}=\frac{1}{2} \\
& \frac{\mathrm{AC}}{\mathrm{DF}}=\frac{5}{10}=\frac{1}{2}
\end{aligned}
$$

Strategy for Solving Similar Right Triangle Problems:

1. Draw three separate triangles and label each triangle with any given information.
2. Based on the information given, set up a proportion to solve for a length or variable.
3. To solve a proportion you first \qquad .

Ex 1:

Find the value of each variable.
a)

b)

Ex 2:

Find AC.

