Section 6.7 – Similar Right Triangles

The <u>height</u> of a triangle can also be referred to as the _____

Similar Right Triangles Theorem If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other. B C D A C C

 \triangle CBD ~ \triangle ACD, \triangle ACD ~ \triangle ABC, and \triangle CBD ~ \triangle ABC

Recall:

If two triangles are similar, then their side lengths are _____.

In other words, the ratios of their corresponding sides are _____.

Ex: Given $\triangle ABC \sim \triangle DEF$, then $\angle A \cong \angle D$, $\angle B \cong \angle E$, and $\angle C \cong \angle F$ and most important $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$.

$$\frac{AB}{DE} = \frac{3}{6} = \frac{1}{2}$$

$$\frac{BC}{EF} = \frac{4}{8} = \frac{1}{2}$$

$$\frac{AC}{DF} = \frac{5}{10} = \frac{1}{2}$$

Strategy for Solving Similar Right Triangle Problems:

- 1. Draw three separate triangles and label each triangle with any given information.
- **2.** Based on the information given, set up a proportion to solve for a length or variable.
- **3.** To solve a proportion you first ______.

Ex 1:

Find the value of each variable.

a)

Ex 2: Find AC.

