\qquad
\qquad

Section 6.2 - Ratios and Proportions

A \qquad is a comparison of two quantities. The ratio of quantity \mathbf{a} to quantity \mathbf{b} is most commonly represented as a fraction $\frac{\mathbf{a}}{\mathbf{b}}$. The ratio can also be represented as $\mathbf{a}: \mathbf{b}$ or \mathbf{a} to \mathbf{b}. Ratios are usually expressed in simplified form. For example, the ratio $\frac{\mathbf{5}}{\mathbf{1 0}}$ or $\mathbf{5 : 1 0}$ is usually simplified as $\frac{\mathbf{1}}{\mathbf{2}}$ or $\mathbf{1 : 2}$.

Ex 1:

a) The perimeter of a rectangle is 40 feet. The ratio of the width to the length is $2: 3$. Find the length and the width.
b) The area of a rectangle is $108 \mathrm{~cm}^{2}$. The ratio of the width to the length is $3: 4$. Find the length and the width.

Ex 2:

a) The measures of the angles in a triangle are in the extended ratio of $3: 4: 8$. Find the measures of the angles.
b) The measures of the angle is a triangle are in the extended ratio of $1: 4: 7$. Find the measures of the angles.

The equality of two ratios is called a \qquad . For example, if the ratio $\frac{a}{b}$ is equal to the ratio $\frac{c}{d}$, then the following proportion $\frac{a}{b}=\frac{c}{d}$ can be written.

Ex 3:

Solve the proportions.
Important Note: The first step in solving a proportion is to \qquad .
Tip: Proportions can be made easier to solve by first simplifying the ratios.
a) $\frac{9}{15}=\frac{6}{x}$
b) $\frac{4}{y-3}=\frac{8}{y}$
c) $\frac{\mathrm{s}-5}{4}=\frac{\mathrm{s}}{10}$

Ex 4:

The ratio of two sides lengths is given. Solve for the variable.
a. $\mathrm{EF}: \mathrm{FG}$ is $4: 5$

b. $\mathrm{SU}: \mathrm{ST}$ is $4: 1$

Ex 5:

Two gears, Gear A and Gear B, have a gear ratio of $1: 3$. If Gear B has 24 teeth, then how many teeth does Gear A have?

Ex 6:
The ratio of the corresponding side lengths of $\Delta \mathrm{QRS}$ to $\Delta \mathrm{VTU}$ is 3:1.
Find the unknown lengths of both triangles.

