Geometry	Note-Taking	Guide
000111001	1,000 - 000	O 0-2-0-0

Name:	
	Period:

Section 6.2 - Ratios and Proportions

A _______ is a comparison of two quantities. The ratio of quantity **a** to quantity **b** is most commonly represented as a fraction $\frac{\mathbf{a}}{\mathbf{b}}$. The ratio can also be represented as **a**:**b** or **a** to **b**. Ratios are usually expressed in simplified form. For example, the ratio $\frac{5}{10}$ or 5:10 is usually simplified as $\frac{1}{2}$ or 1:2.

Ex 1:

- a) The <u>perimeter</u> of a rectangle is 40 feet. The ratio of the width to the length is 2:3. Find the length and the width.
- **b)** The <u>area</u> of a rectangle is 108 cm². The ratio of the width to the length is 3:4. Find the length and the width.

Ex 2:

- **a)** The measures of the angles in a triangle are in the extended ratio of 3:4:8. Find the measures of the angles.
- **b)** The measures of the angle is a triangle are in the extended ratio of 1:4:7. Find the measures of the angles.

The equality of two ratios is called a ______. For example, if the ratio $\frac{a}{b}$ is equal to the ratio $\frac{c}{d}$, then the following proportion $\frac{a}{b} = \frac{c}{d}$ can be written.

Ex 3:

Solve the proportions.

Important Note: The first step in solving a proportion is to ______.

Tip: Proportions can be made easier to solve by first simplifying the ratios.

a)
$$\frac{9}{15} = \frac{6}{x}$$

b)
$$\frac{4}{y-3} = \frac{8}{y}$$

c)
$$\frac{s-5}{4} = \frac{s}{10}$$

Ex 4:

The ratio of two sides lengths is given. Solve for the variable.

a. EF:FG is 4:5

b. SU:ST is 4:1

Ex 5:

Two gears, Gear A and Gear B, have a gear ratio of 1:3. If Gear B has 24 teeth, then how many teeth does Gear A have?

Ex 6:

The ratio of the corresponding side lengths of ΔQRS to ΔVTU is 3:1. Find the unknown lengths of both triangles.

