\qquad
\qquad
Section 3.4 - Slopes of Parallel and Perpendicular Lines and Constructing Equations
Find the slope of lines j and k .

$\mathrm{m}_{\mathrm{j}}=$ \qquad $\mathrm{m}_{\mathrm{k}}=$ \qquad

Question 1:

What do you notice about the slopes of the parallel lines j and k ?

$\mathrm{m}_{\mathrm{j}}=$ \qquad
\qquad

Question 1:

What do you notice about the slopes of the perpendicular lines j and k ?

Question 2:

What is the result when multiplying the slopes of the perpendicular lines j and k ?

Slopes of Parallel Lines

If two lines are parallel, then their slopes

Slopes of Perpendicular Lines

If two lines are perpendicular, then their slopes are \qquad .

If $j \perp k$, then $m_{j}=\frac{a}{b}$ and $m_{k}=-\frac{b}{a}$

Important: $\left(\mathrm{m}_{\mathrm{j}}\right)\left(\mathrm{m}_{\mathrm{k}}\right)=-1$.

Strategy for Constructing an Equation

1. Write out the general slope-intercept equation $y=\mathbf{m x}+\mathbf{b}$. Find the values of \mathbf{m} and \mathbf{b}.
2. Determine the slope, m, based on the equation and condition already given and plug the value for \mathbf{m} in the equation you are constructing.
3. Plug in the x - and y-coordinates of the point given to solve for the y-intercept, \mathbf{b}. Then plug b back into the equation that only has the value for m. You're done!

Important: The y-intercept of the equation given is NOT used for anything when constructing an equation.

Ex 1:

a) Write an equation of the line that passes through the point $(-2,6)$ and is parallel to the line formed
by the equation $\mathrm{y}=-\mathrm{x}+3$.
b) Write an equation of the line that passes through the point $(2,-1)$ and is parallel to the line formed by the equation $\mathrm{y}=\frac{1}{2} \mathrm{x}+3$.

Ex 2:

a) Write an equation of the line that passes through the point $(0,3)$ and is perpendicular to the line formed by the equation $\mathrm{y}=\frac{1}{2} \mathrm{x}-1$.
b) Write an equation of the line that passes through the point $(-4,2)$ and is perpendicular to the line formed by the equation $y=-4 x-3$.

