\qquad
\qquad

Section 2.2 - Prove Statements about Segments and Angles

Helpful Tips for Completing a Proof:

1. If possible, always label the diagram with the given information or newly acquired information.

Labeling a diagram can make useful information stand out, which may have not otherwise.
Ex: Tick marks for congruent segments, arcs for congruent angles, and numbers for side lengths.
2. Analyze ALL the previous statements when trying to determine how to get the next statement in the proof. For example, sometimes the $5^{\text {th }}$ statement can be constructed using the $1^{\text {st }}$ and $4^{\text {th }}$

Ex 1:

Given: $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$
Prove: $\mathrm{m} \angle \mathrm{ABD}=\frac{1}{2} \mathrm{~m} \angle \mathrm{ABC}$

Statement	Reason
1. $\overrightarrow{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}$	1.
2. $\angle \mathrm{ABD} \cong \angle \mathrm{DBC}$	2.
3. $\mathrm{m} \angle \mathrm{ABD}=\mathrm{m} \angle \mathrm{DBC}$	3.
4. $\mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{DBC}=\mathrm{m} \angle \mathrm{ABC}$	4.
5. $\mathrm{m} \angle \mathrm{ABD}+\mathrm{m} \angle \mathrm{ABD}=\mathrm{m} \angle \mathrm{ABC}$	5.
6. $2(\mathrm{~m} \angle \mathrm{ABD})=\mathrm{m} \angle \mathrm{ABC}$	6.
7. $\mathrm{m} \angle \mathrm{ABD}=\frac{1}{2} \mathrm{~m} \angle \mathrm{ABC}$	7.

Ex 3:

Given: $\mathrm{AC}=\mathrm{BD}$
Prove: $\mathrm{AB}=\mathrm{CD}$

Statement	Reason
1. $\mathrm{AC}=\mathrm{BD}$	1.
2. $\mathrm{AC}=\mathrm{AB}+\mathrm{BC}$	2.
3. $\mathrm{BD}=\mathrm{BC}+\mathrm{CD}$	3.
4. $\mathrm{AB}+\mathrm{BC}=\mathrm{BD}$	4.
5. $\mathrm{AB}+\mathrm{BC}=\mathrm{BC}+\mathrm{CD}$	5.
6. $\mathrm{AB}=\mathrm{CD}$	6.

Ex 4:

Given: B is the midpoint of AC
Prove: $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$

Statement	Reason
1. B is the midpoint of AC	1.
2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}}$	2.
3. $\mathrm{AB}=\mathrm{BC}$	3.
4. $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$	4.
5. $\mathrm{AB}+\mathrm{AB}=\mathrm{AC}$	5.
6. $2 \mathrm{AB}=\mathrm{AC}$	6.
7. $\mathrm{AB}=\frac{1}{2} \mathrm{AC}$	7.

