Geometry Note-Taking Guide

\qquad
\qquad

Section 10.5 - Areas of Circles and Sectors

The area formula for a circle is \qquad .

A \qquad of a circle is a portion of a circles area.
It is the region bounded by two radii of the circle and their intercepted arc. In the diagram, the region bounded by the radii $\overline{\mathrm{AP}}, \overline{\mathrm{BP}}$, and the intercepted arc $\overparen{A B}$, is called \qquad .

Deriving the Area of Sector Formula

Note: The shaded area is the sector.

Diagram	$\frac{\text { Area of Sector }}{\text { Total Circle Area }\left(\mathbf{A}=\boldsymbol{\pi} \mathbf{r}^{2}\right)}$	$\frac{\text { Measurement of Sector Arc }}{\text { Total Arc Measure }\left(\mathbf{3 6 0} \mathbf{0}^{\circ}\right.}$

What is the relationship between the ratio of the measurement of a sector arc to $\mathbf{3 6 0}{ }^{\circ}$ and the ratio of the area of the sector to the circles area?

Area of a Sector Formula

The ratio of the measure of the intercepted arc to 360° is equal to the ratio of the area of a sector $\left(\mathrm{A}_{\mathrm{s}}\right)$ of a circle to the area of the circle $\left(\pi r^{2}\right)$.

$$
\frac{\mathbf{m A B}}{360^{\circ}}=\frac{\mathbf{A}_{\mathbf{s}}}{\pi \mathbf{r}^{2}}
$$

Ex 1:

a) Find the area of sector YXZ.

b) Find the radius of $\odot E$ given the area of sector DEF is 9π in. ${ }^{2}$.

c) Find $m \overparen{A B}$

Note: Always use shorter measure.

$$
A_{s}=49 \pi \mathrm{~cm}^{2}
$$

d) Find the area of $\odot E$.

Area of Sector DEF $=24 \mathrm{ft}^{2}$

Ex 2:

Find the area of the shaded region.
a)

b)

