Geometry Note-Taking Guide

Name:	
	Period:

Section 10.5 – Areas of Circles and Sectors

The area formula for a circle is	
A of a circle is a portion of a circles area. It is the region bounded by two radii of the circle and their intercepted arc.	
In the diagram, the region bounded by the radii \overline{AP} , \overline{BP} , and	P
the intercepted arc \widehat{AB} is called	\mathbb{Z}_{B}

Deriving the Area of Sector Formula

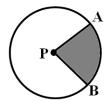
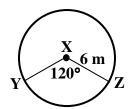
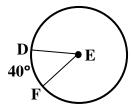

Note: The shaded area is the sector.

Diagram	Area of Sector Total Circle Area $(A = \pi r^2)$	Measurement of Sector Arc Total Arc Measure (360°)

What is the relationship between the <u>ratio</u> of the <u>measurement of a sector arc to 360° and the <u>ratio</u> of the <u>area of the sector to the circles area?</u></u>

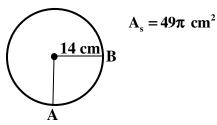
Area of a Sector Formula


The ratio of the measure of the intercepted arc to 360° is equal to the ratio of the area of a sector (A_s) of a circle to the area of the circle (πr^2).

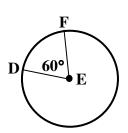

$$\frac{\widehat{mAB}}{360^{\circ}} = \frac{A_{S}}{\pi r^{2}}$$

Ex 1:

a) Find the area of sector YXZ.

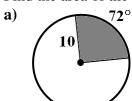


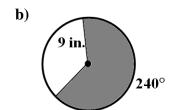
b) Find the radius of \bigcirc E given the area of sector DEF is 9π in.².



c) Find mAB

Note: Always use shorter measure.




d) Find the area of $\odot E$.

Area of Sector DEF = 24 ft^2

Ex 2: Find the area of the shaded region.

