Geometry Note-Taking Guide

Name:_____

Section 10.4 – Circumference and Arc Length

- The ______ of a circle is the perimeter or distance around a circle. Formula: C = _____
- The ______ of a circle is a portion of its circumference.
- The ______ of a circle is a portion of the total degree measure of a circle, _____.

Important Note: An arcs length is different from an arcs measure.

Ex: A circle is named using its center point.

Deriving the Area of Sector Formula

Diagram	$\frac{\widehat{ABC}}{\text{Total Arc Length (C = 2\pi r)}}$	mABC Total Arc Measure (360°)
C C		
B C C		

What is the relationship between the <u>ratio</u> of the <u>arc measure to 360°</u> and the <u>ratio</u> of the <u>arc length to its</u> <u>circumference</u>?

Period:

Arc Length Formula

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

 $\frac{\widehat{\text{mAB}}}{360^{\circ}} = \frac{\text{Arc length of AB}}{2\pi r}$

b) Find \widehat{mYZ} .

c) Find the radius of \bigcirc S.

d) Find the circumference of \bigcirc B.

f) Find the circumference of \bigcirc P.

