Geometry Note-Taking Guide

Name: \qquad
Period: \qquad

Section 10.4 - Circumference and Arc Length

The \qquad of a circle is the perimeter or distance around a circle. Formula: $\mathrm{C}=$ \qquad
The \qquad of a circle is a portion of its circumference.

The \qquad of a circle is a portion of the total degree measure of a circle, \qquad .

Important Note: An arcs length is different from an arcs measure.
Ex: A circle is named using its center point.
This is \odot P.

18π in. Total Circle Arc Length $($ Circumference $)=$ \qquad $\mathrm{m} \overparen{\mathrm{AB}}($ Measure of $\operatorname{arc} \mathrm{AB})=$ \qquad Total Circle Arc Measure $=$ \qquad

Deriving the Area of Sector Formula

Diagram	$\frac{\widehat{\mathrm{ABC}}}{\text { Total Arc Length }(\mathrm{C}=2 \pi \mathrm{r})}$	$\frac{\mathrm{mABC}}{\text { Total Arc Measure }\left(\mathbf{3 6 0}^{\circ}\right)}$

What is the relationship between the ratio of the arc measure to $\mathbf{3 6 0}$ and the ratio of the arc length to its circumference?

Arc Length Formula

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$
\frac{\mathrm{m} \overparen{\mathrm{AB}}}{360^{\circ}}=\frac{\text { Arc length of } \overparen{\mathrm{AB}}}{2 \pi \mathrm{r}}
$$

Ex 1:

a) Find $\overparen{Y Z}$.

b) Find $m \overparen{Y Z}$.

c) Find the radius of $\odot \mathrm{S}$.

d) Find the circumference of $\odot \mathrm{B}$.

e) Find $m \widehat{A B C}$.

f) Find the circumference of $\odot P$.

