Name: \qquad Per. \qquad

Form A

Show ALL work!!!

Pre-Calculus Test Chapter 0

(an

1 Rationalize the denominator of the expression. Then simplify your answer.

$$
\frac{2}{5-\sqrt{3}}
$$

2 Simplify.

$$
\sqrt[3]{8 \times 10^{15}}
$$

3 Factor.

$$
15 x^{2}-11 x+2
$$

4 Simplify.
$\frac{x^{2}-14 x+49}{x^{2}-49} \div \frac{3 x-21}{x+7}$

5 Rewrite the expression in radical form. $81^{\frac{3}{4}}$

6 Factor completely.
$16 x^{2}-\frac{1}{9}$

7 Solve the equation and check your solution.

$$
\frac{3}{x^{2}-3 x}+\frac{4}{x}=\frac{1}{x-3}
$$

8 Simplify.

$$
\frac{\left(\frac{x}{2}-1\right)}{(x-2)}
$$

9 Simplify the radical expression.
$\sqrt[5]{160 x^{8} z^{4}}$

10 Solve the equation and check your solutions.
$(x-5)^{\frac{3}{2}}=8$

11 Simplify the radical expression.
$10 \sqrt{32}-6 \sqrt{18}$

12 Factor completely.
$27 x^{3}+8$

13 Simplify the expression.
$\sqrt{\sqrt{32}}$

14 Determine which number in the setare natural numbers, integers, ratonial numbers, and irrational numbers.

$$
\sqrt{5},-7,-\frac{7}{3}, 0,3.12, \frac{5}{4},-3,12,5
$$

Natural Numbers:
Integers:
Rational Numbers:
Irrational Numbers:

15 Use the quadratic formula to solve.
$2+2 x-x^{2}=0$

16 Solve by completing the square. $x^{2}-2 x-3=0$

17 Geometry Write an expression in factored form for the area of the figure.

18 Solve. Note: Don't forget to check for extraneous solutions.
$\sqrt{2 x+7}-x=2$

19 Find the greatest common factor such that the remaining factors have only integer coeeficients.

$$
\frac{1}{3} y^{2}-5 y+2
$$

20 Geometry Find the ratio of the area of the shaded portion of the figure to the total area of the figure.

