Chapter 4 Part 2 Summary Sheet

General equation of sine and cosine: $y = a \sin(bx - c) + d$ $y = a \cos(bx - c) + d$

Amplitude – the distance from the position of equilibrium **Period** – the length of one complete cycle of the graph **Phase Shift** – a horizontal shift of the starting point **Vertical Translation** – a vertical shift of all point of the graph

Amplitude: |a| **Period:** $\frac{2\pi}{b}$ **Phase Shift:** bx - c = 0 **Vertical Translation:** d

General equation of cosecant and secant: $y = a \csc(bx - c) + d$ $y = a \sec(bx - c) + d$

To graph csc x, draw a dotted graph of the reciprocal of csc x, sin x, with one additional step. To graph sec x, draw a dotted graph of the reciprocal of sec x, cos x, with one additional step.

General equation of tangent and cotangent: $y = a \tan(bx - c) + d$ $y = a \cot(bx - c) + d$

Amplitude: Not defined **Period:** $\frac{\pi}{b}$ **Phase Shift :** bx - c = 0 **Vertical Translation:** d

Tangent has a starting point. Cotangent has a starting asymptote.

Note: If a is negative, then graph is reflected x-axis initially.

Domain: all reals Range: [-1, 1]Period: 2π

Domain: all reals Range: [-1, 1]Period: 2π

Domain: all $x \neq \frac{\pi}{2} + n\pi$ Range: $(-\infty, \infty)$ Period: π

Domain: all $x \neq n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Period: 2π

Domain: all $x \neq \frac{\pi}{2} + n\pi$ Range: $(-\infty, -1] \cup [1, \infty)$ Period: 2π

Domain: all $x \neq n\pi$ Range: $(-\infty, \infty)$ Period: π

45°- 45°- 90° Triangle Properties

 $\text{Leg} \cdot \sqrt{2} = \text{Hypotenuse}$

Short Leg $\cdot \sqrt{3}$ = Long leg Short Leg $\cdot 2$ = Hypotenuse

To isolate x in sin x = $\frac{1}{2}$, you take the inverse sine of both sides of the equation.

 $\sin x = \frac{1}{2} \longrightarrow \sin^{-1}(\sin x) = \sin^{-1}\left(\frac{1}{2}\right) \longrightarrow x = \sin^{-1}\left(\frac{1}{2}\right)$

Bearings

In surveying and navigation, directions are generally given in terms of bearings. A bearing measures the acute angle that a path or line of sight makes with a fixed north-south line. **Examples:**

35 degrees east of south 80 degrees west of north

t of north 45 degrees east of north

Definition of Simple Harmonic Motion $d = a \sin \omega t$ or $d = a \cos \omega t$

Distance from origin: d **Period:** $\frac{2\pi}{\omega}$ **Frequency (cycles per second):** $\frac{\omega}{2\pi}$