Chapter 4 Part 2 Summary Sheet

General equation of sine and cosine: $y=a \sin (b x-c)+d$

$$
y=a \cos (b x-c)+d
$$

Amplitude - the distance from the position of equilibrium
Period - the length of one complete cycle of the graph
Phase Shift - a horizontal shift of the starting point
Vertical Translation - a vertical shift of all point of the graph
Amplitude: $|\mathrm{a}| \quad$ Period: $\frac{2 \pi}{\mathrm{~b}}$
Phase Shift: $b x-c=0 \quad$ Vertical Translation: d

General equation of cosecant and secant: $y=a \csc (b x-c)+d \quad y=a \sec (b x-c)+d$
To graph $\csc x$, draw a dotted graph of the reciprocal of $\csc x, \sin x$, with one additional step. To graph sec x, draw a dotted graph of the reciprocal of sec $x, \cos x$, with one additional step.
General equation of tangent and cotangent: $y=a \tan (b x-c)+d \quad y=a \cot (b x-c)+d$ Amplitude: Not defined Period: $\frac{\pi}{b}$ Phase Shift : $\mathrm{bx}-\mathrm{c}=0 \quad$ Vertical Translation: d Tangent has a starting point. Cotangent has a starting asymptote.
Note: If a is negative, then graph is reflected x -axis initially.

Domain: all reals
Range: [$-1,1$]
Period: 2π

Domain: all $x \neq n \pi$
Range: $(-\infty,-1] \cup[1, \infty)$
Period: 2π

Domain: all reals
Range: $[-1,1]$
Period: 2π

Domain: all $x \neq \frac{\pi}{2}+n \pi$
Range: $(-\infty,-1] \cup[1, \infty)$
Period: 2π

Domain: all $x \neq \frac{\pi}{2}+n \pi$ Range: $(-\infty, \infty)$
Period: π

Domain: all $x \neq n \pi$
Range: $(-\infty, \infty)$
Period: π

$$
\begin{array}{llcc}
y=\arcsin x & \text { OR } y=\sin ^{-1} x & -90^{\circ} \leq \theta \leq 90^{\circ} \text { OR }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} & \text { I \& IV } \\
y=\arccos x & \text { OR } y=\cos ^{-1} x & 0 \leq \theta \leq 180^{\circ} \text { OR } 0 \leq \theta \leq \pi & \text { I \& II } \\
y=\arctan x & \text { OR } y=\tan ^{-1} x & -90^{\circ}<\theta<90^{\circ} \text { OR }-\frac{\pi}{2}<\theta<\frac{\pi}{2} & \text { I \& IV }
\end{array}
$$

Important: The -1 in $\sin ^{-1} \mathrm{x}$ is NOT a power. It represent inverse notation, just as $f^{-1}(x)$ represent the inverse of $f(x) . \quad \sin ^{-1} x \neq \frac{1}{\sin x}$

$$
45^{\circ}-45^{\circ}-90^{\circ}
$$

Triangle Properties
Leg

Leg

Leg $\cdot \sqrt{2}=$ Hypotenuse

$$
30^{\circ}-60^{\circ}-90^{\circ}
$$

Triangle Properties

Long Leg
Short Leg $\cdot \sqrt{3}=$ Long leg Short Leg • 2 = Hypotenuse

To isolate x in $\sin x=\frac{1}{2}$, you take the inverse sine of both sides of the equation.

$$
\sin x=\frac{1}{2} \quad \rightarrow \quad \sin ^{-1}(\sin x)=\sin ^{-1}\left(\frac{1}{2}\right) \quad \rightarrow \quad x=\sin ^{-1}\left(\frac{1}{2}\right)
$$

Bearings

In surveying and navigation, directions are generally given in terms of bearings. A bearing measures the acute angle that a path or line of sight makes with a fixed north-south line.

Examples:

35 degrees east of south $\mathbf{8 0}$ degrees west of north $\mathbf{4 5}$ degrees east of north

Definition of Simple Harmonic Motion $d=a \sin \omega t \quad$ or $\quad d=a \cos \omega t$
Distance from origin: d Period: $\frac{2 \pi}{\omega} \quad$ Frequency (cycles per second): $\frac{\omega}{2 \pi}$

