Chapter 4 Part 1 Summary Sheet

Conversion Between Degrees and Radians

1. To convert degrees to radians, multiply degrees by $\frac{\pi \text{ radians}}{180^{\circ}}$

2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \text{ radians}}$

Note: If an angle measure has no units, then its unit of measurement is radians.

Coterminal Angles – angles whose terminal sides overlap. To find, add or subtract 360° or 2π repeatedly. There are infinitely many coterminal angles.

Important: For the following formulas, theta θ is always in radians.

Arc Length: $s = r\theta$ Linear Speed: $v = \frac{s}{t}$ Angular Speed: $\omega = \frac{\theta}{t}$ Area of a Sector: $A = \frac{1}{2}r^2\theta$

Angle in Standard Position

45°- 45°- 90°

Pythagorean Theorem: $a^2 + b^2 = c^2$ **Pythagorean Triples:** 3, 4, 5 5, 12, 13 8, 15, 17

 $\text{Leg} \cdot \sqrt{2} = \text{Hypotenuse}$

30°- 60°- 90° Triangle Properties

Short Leg $\cdot \sqrt{3}$ = Long leg Short Leg \cdot 2 = Hypotenuse 6 Trigonometric Ratios: sine cosine tangent cosecant secant cotangent

Acronym to help remember trig ratios: Soh Cah Toa or $S\frac{o}{h}$ $C\frac{a}{h}$ $T\frac{o}{a}$

$$\sin \theta = \frac{O}{H}$$

$$\cos \theta = \frac{A}{H}$$

$$\sin \theta = \frac{O}{H}$$
 $\cos \theta = \frac{A}{H}$ $\tan \theta = \frac{O}{A}$

$$\csc \theta = \frac{H}{\Omega}$$
 $\sec \theta = \frac{H}{\Delta}$ $\cot \theta = \frac{A}{\Omega}$

$$\sec \theta = \frac{H}{\Lambda}$$

$$\cot \theta = \frac{A}{\Omega}$$

Fundamental Trigonometric Identities Quotient Identities

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Pythagorean Identities

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
 $1 + \tan^2 \theta = \sec^2 \theta$ $1 + \cot^2 \theta = \csc^2 \theta$

Method for Remembering Pythagorean Identities: $\sin^2 \theta + \cos^2 \theta = 1$ is the identity easiest to remember. Notice that the identities $1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$ both start with a 1 plus a ratio with "tan" in its name. The identity with a $\cot \theta$ is followed by a ratio that also starts with a c, $\csc \theta$.

Trigonometric Functions of Any Angle

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$

$$\csc \theta = \frac{r}{v}$$
 $\sec \theta = \frac{r}{x}$ $\cot \theta = \frac{x}{v}$

Important:

r is always positive y is always opposite x is always adjacent

Reference Angle – the acute angle θ ' formed by the terminal side and the x-axis.

$$\theta' = \pi - \theta$$
 (radians)
 $\theta' = 180^{\circ} - \theta$ (degrees)

$$\theta' = \theta - \pi$$
 (radians)
 $\theta' = \theta - 180^{\circ}$ (degrees)

 $\theta' = 2\pi - \theta$ (radians) $\theta' = 360^{\circ} - \theta$ (degrees)