Chapter 4 Part 1 Summary Sheet

Conversion Between Degrees and Radians

1. To convert degrees to radians, multiply degrees by $\frac{\pi \text { radians }}{180^{\circ}}$
2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \text { radians }}$

Note: If an angle measure has no units, then its unit of measurement is radians.

Coterminal Angles - angles whose terminal sides overlap. To find, add or subtract 360° or 2π repeatedly. There are infinitely many coterminal angles.

Important: For the following formulas, theta θ is always in radians.
Arc Length: $s=r \theta \quad$ Linear Speed: $v=\frac{s}{t} \quad$ Angular Speed: $\omega=\frac{\theta}{t} \quad$ Area of a Sector: $A=\frac{1}{2} r^{2} \theta$
Common Trig Angles

Angular Speed: ω (omega)

Angle in Standard Position

Pythagorean Theorem: $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2} \quad$ Pythagorean Triples: $\quad 3,4,5 \quad 5,12,13 \quad 8,15,17$

$$
45^{\circ}-45^{\circ}-90^{\circ}
$$

Triangle Properties

Leg

Leg $\cdot \sqrt{2}=$ Hypotenuse

$$
30^{\circ}-60^{\circ}-90^{\circ}
$$

Triangle Properties

Long Leg
Short Leg $\cdot \sqrt{3}=$ Long leg Short Leg • 2 = Hypotenuse

6 Trigonometric Ratios: sine cosine tangent cosecant secant cotangent Acronym to help remember trig ratios: Soh Cah Toa or $S \frac{0}{h} C \frac{a}{h} T \frac{0}{a}$

$$
\begin{array}{lll}
\sin \theta=\frac{\mathrm{O}}{\mathrm{H}} & \cos \theta=\frac{\mathrm{A}}{\mathrm{H}} & \tan \theta=\frac{\mathrm{O}}{\mathrm{~A}} \\
\csc \theta=\frac{\mathrm{H}}{\mathrm{O}} & \sec \theta=\frac{\mathrm{H}}{\mathrm{~A}} & \cot \theta=\frac{\mathrm{A}}{\mathrm{O}}
\end{array}
$$

Fundamental Trigonometric Identities
Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta}
\end{array} \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Pythagorean Identities

$$
\sin ^{2} \theta+\cos ^{2} \theta=1 \quad 1+\tan ^{2} \theta=\sec ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta
$$

Method for Remembering Pythagorean Identities: $\sin ^{2} \theta+\cos ^{2} \theta=1$ is the identity easiest to remember. Notice that the identities $1+\tan ^{2} \theta=\sec ^{2} \theta$ and $1+\cot ^{2} \theta=\csc ^{2} \theta$ both start with a 1 plus a ratio with "tan" in its name. The identity with a $\cot \theta$ is followed by a ratio that also starts with a $\mathrm{c}, \csc \theta$.

Trigonometric Functions of Any Angle

$$
\begin{array}{lll}
\sin \theta=\frac{\mathrm{y}}{\mathrm{r}} & \cos \theta=\frac{\mathrm{x}}{\mathrm{r}} & \tan \theta=\frac{\mathrm{y}}{\mathrm{x}} \\
\csc \theta=\frac{\mathrm{r}}{\mathrm{y}} & \sec \theta=\frac{\mathrm{r}}{\mathrm{x}} & \cot \theta=\frac{\mathrm{x}}{\mathrm{y}}
\end{array}
$$

A

Quotient Identities
side adjacent to θ

