Chapter 10 Summary Sheet

Area Formulas

Area of a Square, Rectangle, and Parallelogram

Formula: A=bh

Area of a Triangle

Formula: $A=\frac{1}{2} b h$

Important: The base and height of any polygon are always perpendicular.

Area of a Trapezoid

Formula: $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$

Area of a Rhombus and Kite

Formula: $A=\frac{1}{2} d_{1} d_{2}$
Note: d means diagonal

Arc Length Formula

Area of a Sector Formula

$$
\frac{\mathrm{mAB}}{360^{\circ}}=\frac{\mathrm{A}_{\mathrm{S}}}{\pi \mathrm{r}^{2}}
$$

Important: Students are often confused with what the difference between $\mathbf{m A B}, \mathbf{A B}$, and $\mathbf{A}_{\mathbf{s}}$ is.
$\mathbf{m A B}$ is the degree measure of an arc. Ex: $30^{\circ}, 95^{\circ}, 120^{\circ}, 240^{\circ}$
$\mathbf{A B}$ is the length of an arc.
Ex: 5 in., $10 \mathrm{~cm}, 24$ units, $18 \pi \mathrm{ft}$
$\mathbf{A}_{\mathbf{s}}$ is the area of a sector.
Ex: $20 \mathrm{ft}^{2}, 56 \mathrm{~cm}^{2}, 23$ units $^{2}, 60 \pi \mathrm{~m}^{2}$

Area of Circle: $A=\pi r^{2}$
Circumference (Perimeter) of Circle: $C=2 \pi r$
Ratio - fraction
Ex: Ratio of x to $y \rightarrow \frac{x}{y}$
Inscribed - inside
Circumscribed - outside
Ex: Circle Inscribed in a Square or
Square Circumscribed about a Circle

Ex: Circle Circumscribed about a Square Square Inscribed in a Circle

Distance Traveled by Rolling Object Formula
 Distance $=$ Revolution $\square 2 \pi r$

When a circle rolls once completely the distance rolled is the circumference ($\mathrm{C}=2 \pi \mathrm{r}$) of the circle. 1 revolution $=2 \pi r$

