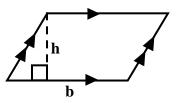
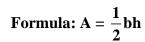
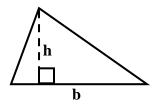
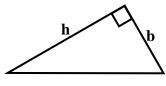

Chapter 10 Summary Sheet

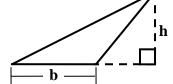

Area Formulas

Area of a Square, Rectangle, and Parallelogram

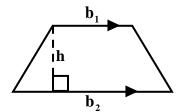

Formula: A = bh

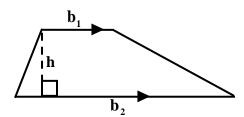






Area of a Triangle

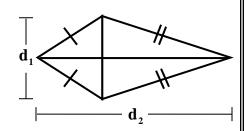




Important: The <u>base</u> and <u>height</u> of any polygon are <u>always perpendicular</u>.

Area of a Trapezoid

Formula:
$$A = \frac{1}{2}h(b_1 + b_2)$$



Area of a Rhombus and Kite

Formula:
$$A = \frac{1}{2}d_1d_2$$

Note: d means diagonal

Arc Length Formula

$$\frac{\text{mAB}}{360^{\circ}} = \frac{\text{Arc length of AB}}{2\pi r}$$

Area of a Sector Formula

$$\frac{\text{nAB}}{660^{\circ}} = \frac{A_{\text{S}}}{\pi r^2} \qquad \qquad \boxed{\qquad \qquad } P \blacktriangleleft$$

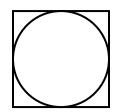
Important: Students are often confused with what the difference between mAB, AB, and A_S is.

mAB is the <u>degree</u> measure of an arc. **Ex:** 30°, 95°, 120°, 240°

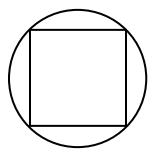
AB is the <u>length</u> of an arc. **Ex:** 5 in., 10 cm, 24 units, 18π ft

 A_s is the <u>area</u> of a sector. **Ex:** 20 ft², 56 cm², 23 units², 60 π m²

Area of Circle: $A = \pi r^2$


Circumference (Perimeter) of Circle: $C = 2\pi r$

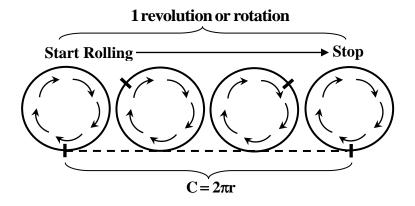
Ratio - fraction


Ex: Ratio of x to y $\Rightarrow \frac{x}{y}$

Inscribed – inside Circumscribed - outside

Ex: Circle Inscribed in a Square or Square Circumscribed about a Circle

Ex: Circle Circumscribed about a Square or Square Inscribed in a Circle



Distance Traveled by Rolling Object Formula

Distance = Revolution $\Box 2\pi r$

When a circle rolls once completely the distance rolled is the circumference ($C = 2\pi r$) of the circle.

1 revolution = $2\pi r$

