Chapter 8 Review with Mr. H

Materials Needed:

- 1. Pencil and paper
- 2. Calculator
- 3. Yellow Sheet

Directions:

Work out each problem shown. After a minute or two Mr. H will show how the problem is done step by step.

Find m\(AED.

Big Idea:

Apply the sum of interior angles formula.

$$(n-2) \cdot 180$$

 $n = 5$
 $(5-2) \cdot 180$
 $3 \cdot 180 = 540$

$$m\angle AED + 80 + 135 + 75 + 130 = 540$$

$$m\angle AED + 420 = 540$$

 $-420 - 420$

$$m\angle AED = 120$$

Find the value of x.

Big Idea:

The sum of the exterior angles of any polygon is always 360°.

$$2x + x + 70 + 60 + 90 + 80 = 360$$
$$3x + 300 = 360$$
$$-300 - 300$$
$$3x = 60$$

$$x = 20$$

What is the measure of each interior angle of a regular pentagon?

Big Idea:

Apply the measure of <u>each</u> interior angle formula.

$$\frac{(n-2)\cdot 180}{n} \qquad n = 5$$

$$\frac{(5-2)\cdot 180}{5} = \frac{3\cdot 180}{5} = 3\cdot 36 = \boxed{108^{\circ}}$$

What is the measure of each exterior angle of a regular pentagon?

Big Idea:

Apply the measure of <u>each</u> exterior angle formula.

$$\frac{360}{n} \qquad n = 5$$

$$\frac{360}{5} = \boxed{72^{\circ}}$$

The measure of each interior angle of a regular polygon is 135° . What is the name of the polygon?

Big Idea:

Apply the measure of <u>each</u> interior angle formula.

$$\frac{(n-2) \cdot 180}{n} = 135 \cdot n$$

$$(n-2) \cdot 180 = 135n$$

$$180n - 360 = 135n$$

$$-180n$$

$$-180n$$

$$-360 = -45n$$

$$-45$$

$$n = 8$$
Octagon

The measure of each exterior angle of a regular polygon is 72° . What is the name of the polygon?

Big Idea:

Apply the measure of <u>each</u> exterior angle formula.

$$n \cdot \frac{360}{n} = 72 \cdot n$$

$$\frac{360}{72} = \frac{12n}{72}$$

$$n = 5$$
Pentagon

Find the value of the variables.

$$3x-18 = 2x + 12$$

$$x = 30$$

$$4y+3x-18 = 180$$

$$4y+3(30)-18 = 180$$

$$y = 27$$

$$3z+3x-18 = 180$$

$$3z+3(30)-18 = 180$$

$$z = 36$$

Given: ☐ABCD

Prove: $\triangle ABD \cong \triangle CDB$

Statement

- **1.** □ABCD
- **2.** $\overline{BA} \cong \overline{CD}$
- **3.** ∠CDB≅ ∠ABD
- **4.** $\overline{\mathrm{BD}} \cong \overline{\mathrm{BD}}$
- **5.** $\triangle ABD \cong \triangle CDB$

1. Given

_{2. a)} Opp. sides of $\square \cong$

Reason

- 3. ы Alternate Interior Angles
- 4. c) Reflexive Property
- 5. d) **SAS**

Find the indicated measures of rhombus PQRS.

a) m
$$\angle$$
QPR = 30°

d) TP =
$$3\sqrt{3}$$

b)
$$m \angle QTP = 90^{\circ}$$

$$e) QP = 6$$

c) m
$$\angle$$
TQP = 60°

f)
$$QR = 6$$

Find the indicated measures of rectangle WXYZ.

a) PX = 7

d) $m \angle WXP = 40^{\circ}$

b) WP = 7

e) m \angle XWP = 40°

c) WY = 14

f) $m\angle ZYW = 40^{\circ}$

Find the indicated measures of square ABCD.

a)
$$m\angle CEB = 90^{\circ}$$

d) m
$$\angle$$
ECB = 45°

$$\mathbf{b}) EC = 1$$

e)
$$AC = 2$$

c) m
$$\angle$$
EBC = 45°

f) BC =
$$\sqrt{2}$$

Find m\(\subset D \) and m\(\subset C \).

$$m\angle D + 91 = 180$$
$$m\angle D = 89^{\circ}$$

$$m\angle C + 132 = 180$$
$$m\angle C = 48^{\circ}$$

Find $m\angle B$, $m\angle C$ and $m\angle D$.

Isosceles Trapezoid

$$m\angle B = 53^{\circ}$$

$$m\angle C + 53 = 180$$

$$m\angle C = 127^{\circ}$$

$$m\angle D = 127^{\circ}$$

Find the value of x.

$$2 \cdot 11 = \frac{1}{2} (x + 8) \cdot 2$$

$$22 = x + 8$$

$$x = 14$$

Find $m\angle E$ and $m\angle K$.

$$m\angle E = 118^{\circ}$$

$$m\angle K + 118 + 74 + 118 = 360$$

$$m\angle K = 50^{\circ}$$

Find $m\angle E$ and $m\angle T$.

$$x + x + 29 + 95 = 360$$

 $x = 118$

$$m\angle E = 118^{\circ}$$

 $m\angle T = 118^{\circ}$

Find the missing side lengths.

Big Idea:

You could use Pythagorean Theorem, **BUT** applying the 45-45-90 triangle property and 5, 12, 13 Pythagorean Triple makes the problem much easier to solve.

The sum of the interior angles of a polygon is two times the sum of its exterior angles. What type of polygon is it?

Sum of Interior Angles

$$(n-2)-180$$

Sum of Exterior Angles

360°

Big Idea:

Apply the sum of interior angles formula.

$$(n-2) \cdot 180 = 2 \cdot 360$$

$$(n-2) \cdot 180 = 720$$

$$n = 6$$
 | Hexagon

If RSTW is a rhombus, what is the area of Δ WXT?

$$A_{\text{Triangle}} = \frac{bh}{2}$$

$$= \frac{8 \cdot 8\sqrt{3}}{2}$$

$$= \boxed{32\sqrt{3}}$$