Chapter 8
 Review with Mr. H

Materials Needed:

1. Pencil and paper
2. Calculator
3. Yellow Sheet

Directions:
Work out each problem shown. After a minute or two Mr. H will show how the problem is done step by step.

Find $\mathrm{m} \angle \mathrm{AED}$.

Big Idea:

Apply the sum of interior angles formula.

$$
\begin{aligned}
& (\mathrm{n}-2) \cdot 180 \\
& \mathrm{n}=5 \\
& (5-2) \cdot 180 \\
& 3 \cdot 180=540
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{AED}+420=540 \\
&-420-420 \\
& \mathrm{~m} \angle \mathrm{AED}=120
\end{aligned}
$$

Find the value of x.

What is the measure of each interior angle of a regular pentagon?

Big Idea:

Apply the measure of each interior angle formula.

$$
\begin{aligned}
& \frac{(n-2) \cdot 180}{n} \quad n=5 \\
& \frac{(5-2) \cdot 180}{5}=\frac{3 \cdot 180}{5}=3 \cdot 36=108^{\circ}
\end{aligned}
$$

What is the measure of each exterior angle of a regular pentagon?

Big Idea:

Apply the measure of each exterior angle formula.

$$
\begin{aligned}
& \frac{360}{n} \quad n=5 \\
& \frac{360}{5}=72^{\circ}
\end{aligned}
$$

The measure of each interior angle of a regular polygon is 135°. What is the name of the polygon?

Big Idea:

Apply the measure of each interior angle formula.

$(\mathrm{n}-2) \cdot 180$	$=135 \cdot \mathrm{n}$
$(\mathrm{n}-2) \cdot 180$	$=135 \mathrm{n}$
$180 \mathrm{n}-360$	$=135 \mathrm{n}$
$-180 \mathrm{n} \quad$	-180 n
$\frac{-360}{-45}$	$=\frac{-45 \mathrm{n}}{-45} \quad \mathrm{n}=8 \quad$ Octagon

The measure of each exterior angle of a regular polygon is 72°. What is the name of the polygon?

Big Idea:

Apply the measure of each exterior angle formula.
$+\frac{360}{x}=72 \cdot n$

$$
\frac{360}{72}=\frac{\lambda 2 n}{71}
$$

$$
\mathrm{n}=5 \quad \text { Pentagon }
$$

Find the value of the variables.

$$
\begin{gathered}
3 \mathrm{x}-18=2 \mathrm{x}+12 \\
\mathrm{x}=30 \\
4 \mathrm{y}+3 \mathrm{x}-18=180 \\
4 \mathrm{y}+3(30)-18=180 \\
\mathrm{y}=27 \\
3 \mathrm{z}+3 \mathrm{x}-18=180 \\
3 \mathrm{z}+3(30)-18=180 \\
\mathrm{z}=36
\end{gathered}
$$

Given: $\square \mathrm{ABCD}$
Prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$

Find the indicated measures of rhombus PQRS.
a) $\mathrm{m} \angle \mathrm{QPR}=30^{\circ}$
d) $\mathrm{TP}=3 \sqrt{3}$
b) $\mathrm{m} \angle \mathrm{QTP}=90^{\circ}$
e) $\mathrm{QP}=6$
c) $\mathrm{m} \angle \mathrm{TQP}=60^{\circ}$
f) $\mathrm{QR}=6$

Find the indicated measures of rectangle WXYZ.
a) $\mathrm{PX}=7$
d) $\mathrm{m} \angle \mathrm{WXP}=40^{\circ}$
b) $\mathrm{WP}=7$
e) $\mathrm{m} \angle \mathrm{XWP}=40^{\circ}$
c) $\mathrm{WY}=14$
f) $\mathrm{m} \angle \mathrm{ZYW}=40^{\circ}$

Find the indicated measures of square ABCD .
a) $\mathrm{m} \angle \mathrm{CEB}=90^{\circ}$
b) $\mathrm{EC}=1$
c) $\mathrm{m} \angle \mathrm{EBC}=45^{\circ}$
d) $\mathrm{m} \angle \mathrm{ECB}=45^{\circ}$
e) $\mathrm{AC}=2$
f) $\mathrm{BC}=\sqrt{2}$

Find $\mathrm{m} \angle \mathrm{D}$ and $\mathrm{m} \angle \mathrm{C}$.

$$
\begin{array}{r}
\mathrm{m} \angle \mathrm{D}+91=180 \\
\mathrm{~m} \angle \mathrm{D}=89^{\circ}
\end{array}
$$

$$
\mathrm{m} \angle \mathrm{C}+132=180
$$

$$
\mathrm{m} \angle \mathrm{C}=48^{\circ}
$$

Find $\mathrm{m} \angle \mathrm{B}, \mathrm{m} \angle \mathrm{C}$ and $\mathrm{m} \angle \mathrm{D}$.
Isosceles Trapezoid

$$
\mathrm{m} \angle \mathrm{~B}=53^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{C}+53=180
$$

$$
\mathrm{m} \angle \mathrm{C}=127^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{D}=127^{\circ}
$$

Find the value of x.

$$
\begin{aligned}
2 \cdot 11 & =\frac{1}{2}(x+8) \cdot 2 \\
22 & =x+8
\end{aligned}
$$

$$
x=14
$$

Find $\mathrm{m} \angle \mathrm{E}$ and $\mathrm{m} \angle \mathrm{K}$.

$\mathrm{m} \angle \mathrm{E}=118^{\circ}$
$\mathrm{m} \angle \mathrm{K}+118+74+118=360$
$\mathrm{m} \angle \mathrm{K}=50^{\circ}$

Find $\mathrm{m} \angle \mathrm{E}$ and $\mathrm{m} \angle \mathrm{T}$.

$x+x+29+95=360$

$$
x=118
$$

$\mathrm{m} \angle \mathrm{E}=118^{\circ}$
$\mathrm{m} \angle \mathrm{T}=118^{\circ}$

Find the missing side lengths.

Big Idea:
 You could use
 Pythagorean Theorem, BUT
 applying the 45-45-90 triangle property and 5, 12, 13 Pythagorean

Triple makes the problem much easier to solve.

The sum of the interior angles of a polygon is two times the sum of its exterior angles. What type of polygon is it?

Sum of Interior Angles

$$
(n-2) \cdot 180
$$

Big Idea:
Apply the sum of interior angles formula.

$$
\begin{aligned}
& (\mathrm{n}-2) \cdot 180=2 \cdot 360 \\
& (\mathrm{n}-2) \cdot 180=720 \\
& \mathrm{n}=6 \text { Hexagon }
\end{aligned}
$$

360°

If RSTW is a rhombus, what is the area of $\Delta W X T ?$

$$
\begin{aligned}
\mathrm{A}_{\text {Triangle }} & =\frac{\mathrm{bh}}{2} \\
& =\frac{8 \cdot 8 \sqrt{3}}{2} \\
& =32 \sqrt{3}
\end{aligned}
$$

