Chapter 6 Summary Sheet The largest angle and longest side are opposite to each other. The <u>smallest angle</u> and <u>shortest side</u> are opposite to each other. #### **Constructing a Triangle** Given three different segments, you can construct a triangle if the sum of the two smallest segments lengths is greater than the third. #### **Triangle Inequality Theorem** The <u>sum</u> of the lengths of any <u>two sides</u> of a triangle is <u>greater than</u> the length of the <u>third side</u>. $$AB + BC > AC$$ $$AC + BC > AB$$ $$AB + AC > BC$$ Ratio – Another name for a fraction **Proportion –** The equality of two ratios **Proportional** – a term used to describe that the ratio of all the corresponding sides of two polygons are equal. **Scale Factor** – The ratio of the corresponding sides of two similar figures. It tells you how much bigger or smaller two figures are to one another. **Similar** – two polygons where the ratio of the corresponding sides are equal and the corresponding angles are congruent. The symbol for similarity is \sim Similarity simply means that two polygons are identical, but typically different in size. If $$\triangle ABC \sim \triangle DEF$$, then $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ and $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$ The 3 Shortcuts for Proving Two Triangles are Similar ## **AA Similarity Postulate** ## SSS Similarity Theorem ## **SAS Similarity Theorem** If $$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$, then $\triangle ABC \sim \triangle DEF$. If $$\angle A \cong \angle D$$ and $\frac{AB}{DE} = \frac{AC}{DF}$, then $\triangle ABC \sim \triangle DEF$. ## **Congruence vs. Similarity** | Congruent Triangles | | Similar Triangles | | |-------------------------------------|---------------------------|---|---------------------------| | ΔABC ≅ ΔDEF | | ΔABC ~ ΔDEF | | | $\overline{AB} \cong \overline{DE}$ | $\angle A \cong \angle D$ | | $\angle A \cong \angle D$ | | $\overline{BC} \cong \overline{EF}$ | $\angle B \cong \angle E$ | $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ | $\angle B \cong \angle E$ | | $\overline{AC} \cong \overline{DF}$ | $\angle C \cong \angle F$ | | $\angle C \cong \angle F$ | If $\triangle ABC \sim \triangle DEF$ and the ratio of any of the corresponding sides is $\frac{1}{1}$, then $\triangle ABC \cong \triangle DEF$. If two triangles are similar, then they are sometimes congruent. If two triangles are congruent, then they are <u>always</u> similar.