
Pg. 321 4.5A – Graphs of Sine and Cosine Functions

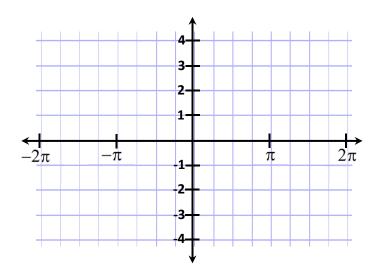
The graph of a sine function is an oscillation known as a sine curve.

Parent function of sine: sin x

5 Key Graphing Points

- 1) Intercepts (3 per cycle)
- 2) Maximum (1 per cycle)
- 3) Minimum (1 per cycle)

Note: Cycle is divided into 4 parts. Normal cycle of sine is 2π . Thus, each part is $\frac{2\pi}{4}$ or $\frac{\pi}{2}$ units wide.

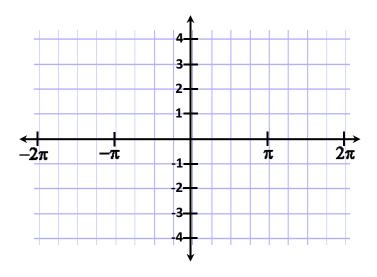

General equation of sine: $y = a \sin(bx - c) + d$

The ______ is half the distance between the maximum and minimum.

Amplitude: |a| Note: We take the absolute value because distance is always positive.

If |a| > 1, graph is vertically stretched. If |a| < 1, then the graph is vertically shrunk.

Ex 1: Graph $y = 3 \sin x$

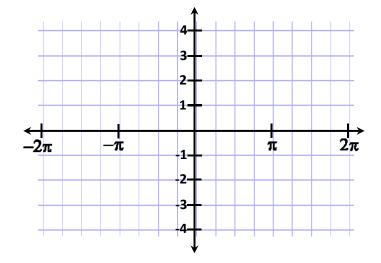

General equation of sine: $y = a \sin(bx - c) + d$

The _____ of a sine function is one complete cycle of the graph.

The normal period for sine is 2π . Period: $\frac{\text{Normal Period}}{b} = \frac{2\pi}{b}$

Ex 2:

Graph $y = \sin(2x)$

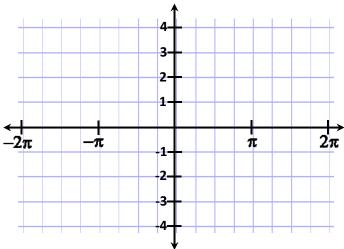

General equation of sine: $y = a \sin(bx - c) + d$

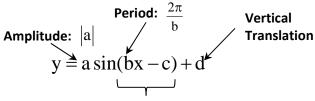
The ______ is the distance the graph is translated horizontally. In other words, the starting point is shifted horizontally.

Phase Shift: START Solve for bx - c = 0 FINISH x + Period

Ex 3:

Graph
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

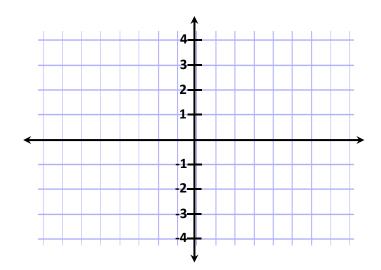

General equation of sine: $y = a \sin(bx - c) + d$


The ______ is the distance the graph is shifted vertically.

Vertical Translation: d

Ex 4:

Graph $y = \sin x + 2$



Phase Shift:
$$bx - c = 0$$

Ex 4:

Graph
$$y = -3\sin\left(2x + \frac{\pi}{4}\right) - 1$$
 Important: 1st Reflect 2nd Shift

Assignment 4.5A Pg. 328 **REQUIRED**: Vocab #'s 1-5

Problem Set #'s 1, 5, 7, 9, 13, 15, 21, 25, 27, 31, 35, 43, 45, 49, 57, 61, 67, 69