Pg. 2904.1 - Radian and Degree Measure

A radian is the measure of a central angle (theta) that is the ratio of the intercepted arc s to the radius r.

$$
\theta=\frac{\mathrm{s}}{\mathrm{r}}
$$

1 revolution $=360^{\circ}=2 \pi$ radians or 6.28 radians

$$
\begin{aligned}
& \frac{1}{2} \text { revolution }=180^{\circ}=\pi \text { radians or } 3.14 \text { radians } \\
& \frac{1}{4} \text { revolution }=90^{\circ}=\frac{\pi}{2} \text { radians or } 1.57 \text { radians }
\end{aligned}
$$

Ex 1:

Determine the quadrant in which each angle lies. (The angle measure is given in radians.)
a) $\frac{11}{8} \pi$

b) $\frac{2}{3} \pi$

Ex 2:
Sketch each angle in standard position.
a) $-\frac{7}{4} \pi$

b) $\frac{5}{2} \pi$

Ex 3:

Determine two coterminal angles (one positive and one negative) for each angle. Give your answer in radians.

Ex 4:
Find (if possible) the complement and supplement of the angle.
$\frac{\pi}{12}$

Ex 5:
Rewrite each angle in radian measure Rewrite each angle in degree measure. as a multiple of π.
315°

Ex 6:

 $-\frac{7}{12} \pi$| Arc Length | Area of Sector |
| :--- | :---: |
| $s=r \theta$ | $\theta=\frac{s}{r}$ |$\quad A=\frac{1}{2} r^{2} \theta$

Ex 7:

Find the area of the sector of the circle with radius r and central angle θ.
Radius: $\mathrm{r}=12$ millimeters \quad Central Angle: $\theta=\frac{\pi}{4}$

DMS (Degrees Minutes Seconds)

Ex 8:

Convert each angle measure to decimal degree form.
a) $245^{\circ} 10^{\prime}$
b) $-408^{\circ} 16^{\prime} 20^{\prime \prime}$

Ex 9:
Convert each angle measure to $\mathrm{D}^{\circ} \mathrm{M}^{\prime} \mathrm{S}$ " form.
a) -345.12°
b) 0.7865°

Assignment 4.1

Pg. 290 Vocab \#'s 1-10 ALL Problem Set \#'s 1-107 ODD
REQUIRED: Vocab, 1, 7, 11, 13, 17, 21, 25, 27, 33, 37, 39, 43, 47, 51, 57, 63, 71, 77, 79, 83, 87, 91, 95-107 ODD

