Pg. 290 4.1 – Radian and Degree Measure

A radian is the measure of a central angle (theta) that is the ratio of the intercepted arc s to the radius r.

 $\theta = \frac{s}{r}$

1 revolution = 360° = 2π radians or 6.28 radians

$$\frac{1}{2}$$
 revolution = 180° = π radians or 3.14 radians

$$\frac{1}{4}$$
 revolution = $90^{\circ} = \frac{\pi}{2}$ radians or 1.57 radians

Ex 1:

Determine the quadrant in which each angle lies. (The angle measure is given in radians.)

a) $\frac{11}{8}\pi$

b) $\frac{2}{3}\pi$

Ex 2:

Sketch each angle in standard position.

a)
$$-\frac{7}{4}\pi$$

$$\mathbf{b})\frac{5}{2}\pi$$

Ex 3:

Determine two coterminal angles (one positive and one negative) for each angle. Give your answer in radians.

Ex 4:

Find (if possible) the complement and supplement of the angle.

$$\frac{\pi}{12}$$

Ex 5:

Rewrite each angle in radian measure Rewrite each angle in degree measure. as a multiple of π .

Ex 6:

$$-\frac{7}{12}\pi$$

Arc Length

Area of Sector

$$s = r\theta$$

$$\theta = \frac{s}{r}$$

$$A = \frac{1}{2}r^2\theta$$

Ex 7:

Find the area of the sector of the circle with radius r and central angle θ .

Radius: r = 12 millimeters

Central Angle: $\theta = \frac{\pi}{4}$

DMS (Degrees Minutes Seconds)

Ex 8:

Convert each angle measure to decimal degree form.

a) 245°10′

b) -408°16'20"

Ex 9:

Convert each angle measure to D°M'S" form.

a) -345.12°

b) 0.7865°

Assignment 4.1

Pg. 290 Vocab #'s 1-10 ALL Problem Set #'s 1-107 ODD

REQUIRED: Vocab, 1, 7, 11, 13, 17, 21, 25, 27, 33, 37, 39, 43, 47, 51, 57, 63, 71, 77, 79, 83, 87, 91, 95-107 ODD