Pg. 40 1.4 – Functions

A ______ is an equation that passes the vertical line test. An equation is a function if for every x-value there is a unique corresponding y-value.

Functions

Non-Functions

Ex 1:

Which sets of ordered pairs represent functions from A to B?

$$A = \{0,1,2,3\}$$
 and $B = \{-2,-1,0,1,2\}$

- **a)** $\{(0,1),(1,-2),(2,0),(3,2)\}$
- **b**) $\{(0,-1),(2,2),(1,-2),(3,0),(1,1)\}$
- \mathbf{c}) $\{(0,0),(1,0),(2,0),(3,0)\}$
- **d)** $\{(0,2),(3,0),(1,1)\}$

Ex 2:

Determine whether the equation represent y as a function of x.

a)
$$x = y^2$$

b)
$$x + y^2 = 4$$

b)
$$x + y^2 = 4$$
 c) $(x-2)^2 + y^2 = 4$ **d)** $y = \sqrt{x+5}$

d)
$$y = \sqrt{x+5}$$

Ex 3:

Evaluate the function at each specified value of the independent variable and simplify.

$$f(x) = \sqrt{x+8} + 2$$

a) f (-8)

b) f(1)

c) f(x-8)

Ex 4:

Find the domain of the function.

$$f(x) = \sqrt[4]{x^2 + 3x}$$

Ex 5:

Find the difference quotient and simplify your answer.

$$f(x) = 5x - x^2$$
, $\frac{f(5+h)-f(5)}{h}$, $h \neq 0$

Assignment 1.4

Pg. 48 Vocab #'s 1, 4, 6

Problem Set #'s 1-29 ODD, 37, 41, 45-73 ODD, 79-89 ODD, 93

Check Answers Pg. A82